Imperial College London

ROY TAYLOR

Faculty of Natural SciencesDepartment of Physics

Professor of Ultrafast Physics and Technology
 
 
 
//

Contact

 

+44 (0)20 7594 7786jr.taylor Website CV

 
 
//

Location

 

636ABlackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

554 results found

Chandran A, Battle RA, Murray RT, Runcorn T, Taylor JRet al., 2021, Watt-level 743 nm source by second-harmonic generation of a cascaded phosphosilicate Raman fiber amplifier, Optics Express, ISSN: 1094-4087

Journal article

Fotiadi AA, Korobko DA, Zolotovskii IO, Taylor JRet al., 2021, Brillouin-like amplification in rare-earth-doped optical fibers, OPTICS EXPRESS, Vol: 29, Pages: 40345-40359, ISSN: 1094-4087

Journal article

Murray RT, Chandran AM, Battle RA, Runcorn TH, Schunemann PG, Zawilski KT, Guha S, Taylor JRet al., 2021, Seeded optical parametric generation in CdSiP2 pumped by a Raman fiber amplifier at 124  µm, Optics Letters, Vol: 46, Pages: 2039-2039, ISSN: 0146-9592

We report a seeded optical parametric generator (OPG) producing tunable radiation from 4.2–4.6 µm. The seeded OPG employs a 13 mm long CdSiP2 (CSP) crystal cut for non-critical phase-matching, pumped by a nanosecond-pulsed, MHz repetition rate Raman fiber amplifier system at 1.24 µm. A filtered, continuous-wave fiber supercontinuum source at 1.72 µm is used as the seed. The source generates up to 0.25 W of mid-infrared (MIR) idler power with a total pump conversion of 42% (combined signal and idler).

Journal article

Murray RT, Chandran AM, Battle RA, Runcorn TH, Schunemann PG, Zawilski KT, Guha S, Taylor JRet al., 2021, Seeded optical parametric generation in CdSiP2 pumped by a nanosecond pulsed, MHz repetition rate Raman fiber amplifier at 1.24 µm, Nonlinear Frequency Generation and Conversion: Materials and Devices XX, Publisher: SPIE, Pages: 1-10

We report a CdSiP2 (CSP) based seeded optical parametric generator (OPG), emitting sub-nanosecond duration, 3 MHz repetition rate, wavelength tunable mid-infrared (MIR) light at 4.2-4.6 μm. We generate up to 0.25 W at 4.2 μm with a total pump conversion efficiency of 42%. The OPG is pumped by a 1.24 μm Raman fiber amplifier system. This is the first demonstration of pumping CSP with a Raman fiber source in this region, and we show that Raman fiber sources in the near-infrared (NIR) are ideal pump sources for non-critically phasematched (NCPM) CSP devices. Pumping CSP at 1.24 μm permits the use of NCPM whilst decreasing the negative effects of both two-photon absorption and linear absorption losses, when compared to conventional 1 μm pumping. This offers a potential advantage for MIR power scaling of CSP parametric devices due to a reduced thermal load in the crystal from residual pump absorption. The OPG is seeded with a continuous-wave fiber supercontinuum source emitting radiation in the 1.7 μm region, to lower the threshold pump intensity required for efficient conversion. NCPM and temperature tuning of the crystal allow for simple wavelength tuning of the idler radiation. We report on laser damage induced by elevated crystal temperatures, which we propose is linked to the decrease in CSP bandgap energy with increasing temperature.

Conference paper

Chandran A, Runcorn T, Murray R, Taylor Jet al., 2019, Nanosecond pulsed 620 nm source by frequency-doubling a phosphosilicate Raman fiber amplifier, Optics Letters, Vol: 44, Pages: 6025-6028, ISSN: 0146-9592

We demonstrate a nanosecond pulsed source at 620 nm with watt-level average power by frequency-doubling a 1240 nm phosphosilicate Raman fiber amplifier. A gain-switched laser diode operating at 1064 nm is amplified in an ytterbium fiber master oscillator power amplifier system and then converted to 1240 nm using a phosphosilicate Raman fiber amplifier with a conversion efficiency of up to 66%. The Raman fiber amplifier is seeded with a continuous-wave 1240 nm laser diode to obtain narrow-linewidth radiation, which is subsequently frequency-doubled in a periodically poled lithium tantalate crystal. A maximum average power of 1.5 W is generated at 620 nm, corresponding to a pulse energy of 300 nJ at a repetition rate of 5 MHz. The source has excellent beam quality (M2≤1.16) and an optical efficiency (1064 nm to 620 nm) of 20%, demonstrating an effective architecture for generating red pulsed light for biomedical imaging applications.

Journal article

Chandran AM, Runcorn TH, Murray RT, Taylor JRet al., 2019, 620 nm source by second harmonic generation of a phosphosilicate raman fiber amplifier, Conference on Lasers and Electro-Optics (CLEO), Publisher: IEEE, ISSN: 2160-9020

We demonstrate a nanosecond-pulsed 620 nm source through frequency doubling a 1240 nm phosphosilicate Raman fiber amplifier. The source emits up to 213 mW of average power, and is repetition rate and pulse duration tunable.

Conference paper

Chandran AM, Runcorn TH, Tmurray R, Taylor JRet al., 2019, 620nm Source by Second Harmonic Generation of a Phosphosilicate Raman Fiber Amplifier

We demonstrate a nanosecond-pulsed 620 nm source through frequency doubling a 1240 nm phosphosilicate Raman fiber amplifier. The source emits up to 213 mW of average power, and is repetition rate and pulse duration tunable.

Conference paper

Runcorn TH, Murray RT, Kelleher EJR, Popov SV, Taylor JRet al., 2019, Watt-level, Duration-tunable Picosecond Source at 560 nm by Second-harmonic Generation of a Raman Fiber Laser

Conference paper

Woodward RI, Kelleher EJR, Runcorn TH, Loranger S, Popa D, Wittwer VJ, Ferrari AC, Popov SV, Kashyap R, Taylor JRet al., 2019, Nanosecond to picosecond fiber bragg grating compression of giant-chirped pulses from an ultra-long mode-locked fiber laser

Conference paper

Gorlitz F, Guldbrand S, Runcorn T, Murray R, Jaso-Tamame A, Sinclair H, Martinez-Perez E, Taylor J, Neil M, Dunsby CW, French Pet al., 2018, easySLM-STED: stimulated emission depletion microscopy with aberration correction, extended field of view and multiple beam scanning, Journal of Biophotonics, Vol: 11, ISSN: 1864-063X

We demonstrate a simplified set‐up for STED microscopy with a straightforward alignment procedure that uses a single spatial light modulator (SLM) with collinear incident excitation and depletion beams to provide phase modulation of the beam profiles and correction of optical aberrations. We show that this approach can be used to extend the field of view for STED microscopy by correcting chromatic aberration that otherwise leads to walk‐off between the focused excitation and depletion beams. We further show how this arrangement can be adapted to increase the imaging speed through multibeam excitation and depletion. Fine adjustments to the alignment can be accomplished using the SLM only, conferring the potential for automation.

Journal article

Runcorn TH, Murray R, Taylor JR, 2018, Highly efficient nanosecond 560 nm source by SHG of a combined Yb-Raman fiber amplifier, Optics Express, Vol: 26, Pages: 4440-4447, ISSN: 1094-4087

We demonstrate a nanosecond 560 nm pulse source based on frequency-doubling the output of a combined Yb-Raman fiber amplifier, achieving a pulse energy of 2.0 µJ with a conversion efficiency of 32% from the 976 nm pump light. By introducing a continuous-wave 1120 nm signal before the cladding pumped amplifier of a pulsed Yb:fiber master oscillator power amplifier system operating at 1064 nm, efficient conversion to 1120 nm occurs within the fiber amplifier due to stimulated Raman scattering. The output of the combined Yb-Raman amplifier is frequency-doubled to 560 nm using a periodically poled lithium tantalate crystal with a conversion efficiency of 47%, resulting in an average power of 3.0 W at a repetition rate of 1.5 MHz. The 560 nm pulse duration of 1.7 ns and the near diffraction-limited beam quality (M2≤1.18) make this source ideally suited to biomedical imaging applications such as optical-resolution photoacoustic microscopy and stimulated emission depletion microscopy.

Journal article

Murray RT, Runcorn TH, Taylor JR, 2018, Fibre-based sources from the UV to mid-infrared

Extensive spectral and temporal versatility are achieved through the integration of nonlinear fibres and crystals with seeded master-oscillator power fibre amplifier configurations through diverse generation processes. Various schemes will be reviewed.

Conference paper

Runcorn TH, Murray RT, Taylor JR, 2017, High Average Power Second-harmonic Generation of a CW Erbium Fiber MOPA, IEEE Photonics Technology Letters, Vol: 29, Pages: 1576-1579, ISSN: 1041-1135

We report the generation of 28 W of 780 nm radiation with near diffraction limited beam quality (M²≤1.15) by frequency-doubling a continuous-wave (CW) erbium fiber master oscillator power amplifier (MOPA) system in a periodically poled lithium niobate crystal. The second-harmonic generation conversion efficiency reached 45% with no roll-off observed, suggesting that further power scaling should be possible with higher fundamental pump powers. The generated second-harmonic had a 3 dB spectral bandwidth of 0.10 nm. The presented architecture represents a simple and effective route to generating high-brightness radiation around 780 nm.

Journal article

Taylor JR, 2017, Supercontinuum sources - past, present - any future?, Conference on Lasers and Electro-Optics (CLEO), Publisher: Optical Society of America Publishing, ISSN: 2160-9020

For nearly fifty years the supercontinuum source, a result of the understanding and control of the underlying physical processes, has evolved as a scientific and commercial success, providing spectral versatility well beyond the limitations of the transmission window of silica and pumped by diverse temporal formats. The relevant physical processes, characteristics and current status are reviewed with a look to future development and application.

Conference paper

Murray RT, Runcorn TH, Guha S, Taylor JRet al., 2017, High average power parametric wavelength conversion at 3.31–3.48 μm in MgO:PPLN, Optics Express, Vol: 25, Pages: 6421-6430, ISSN: 1094-4087

We present results of high average power mid-infrared (mid-IR) generation employingsynchronized nanosecond pulsed ytterbium and erbium fiber amplifier systems using periodicallypoled lithium niobate. We generate greater than 6 W of mid-IR radiation tunable in wavelengthbetween 3.31–3.48μm, at power conversion efficiencies exceeding 75%, with near diffractionlimited beam quality (M2= 1.4). Numerical modeling is used to verify the experimental resultsin differing pump depletion regimes.

Journal article

Runcorn T, Murray RT, Taylor JR, 2017, Microjoule Nanosecond 560 nm Source by SHG of a Combined Yb-Raman Fiber Amplifier, Pages: ATu1A-7

Conference paper

Murray RT, Runcorn T, Guha S, Taylor JRet al., 2017, Fibre MOPA Pumped MIR Parametric Wavelength Conversion, Pages: AM2A-1

Conference paper

Murray RT, Runcorn TH, Kelleher EJR, Guha S, Taylor JRet al., 2016, Mid-Infrared Difference Frequency-Generation with Synchronized Fiber Lasers, Advanced Solid State Lasers

Conference paper

Murray RT, Runcorn TH, Kelleher EJR, Taylor JRet al., 2016, Watt-level Nanosecond 589 nm Source by SHG of a Cascaded Raman Amplifier, Advanced Solid State Lasers 2016

Conference paper

Taylor JR, 2016, Tutorial on fiber-based sources for biophotonic applications, Journal of Biomedical Optics, Vol: 21, ISSN: 1560-2281

Fiber-based lasers and master oscillator power fiber amplifier configurations are described. These allow spectral versatility coupled with pulse width and pulse repetition rate selection in compact and efficient packages. This is enhanced through the use of nonlinear optical conversion in fibers and fiber-coupled nonlinear crystals, which can be integrated to provide all-fiber pump sources for diverse application. The advantages and disadvantages of sources based upon supercontinuum generation, stimulated Raman conversion, four-wave mixing, parametric generation and difference frequency generation, allowing spectral coverage from the UV to the mid-infrared, are considered.

Journal article

Murray RT, Runcorn TH, Kelleher EJR, Taylor JRet al., 2016, Highly efficient mid-infrared difference-frequency generation using synchronously pulsed fiber lasers, Optics Letters, Vol: 41, Pages: 2446-2449, ISSN: 1539-4794

We report the development of a high average power, picosecond-pulse, mid-infrared source based on difference-frequency generation (DFG) of two synchronous master oscillator power fiber amplifier systems. The generated idler can be tuned over the range 3.28–3.45 μm delivering greater than 3.4 W of average power, with a maximum pump to total DFG power conversion efficiency of 78%. The benefits of a synchronously pumped scheme, compared to CW seeding of DFG sources, are discussed.

Journal article

Taylor JR, 2016, Fibre-integrated, non-linear manipulation of pulsed fibre lasers, Conference on Lasers and Electro-Optics (CLEO), Publisher: IEEE, ISSN: 2160-9020

Conference paper

Murray RT, Kelleher EJR, Runcorn TH, Taylor JRet al., 2015, Multi-Watt-level 3.28-3.45 um difference frequency generation using synchronous fiber lasers, Mid-Infrared Coherent Sources 2016

Conference paper

Runcorn TH, Murray RT, Kelleher EJR, Popov SV, Taylor JRet al., 2015, Duration-tunable picosecond source at 560 nm with watt-level average power, Optics Letters, Vol: 40, Pages: 3085-3088, ISSN: 0146-9592

A pulse source at 560 nm that is tunable in duration between 50 ps and 2.7 ns with >1  W of average power and near diffraction-limited beam quality is demonstrated. The source is based on efficient (up to 50%) second-harmonic generation in a periodically poled lithium tantalate crystal of a linearly polarized fiber-integrated Raman amplifier operating at 1120 nm. A duration-tunable ytterbium master-oscillator power-fiber amplifier is used to pulse-pump the Raman amplifier, which is seeded by a continuous-wave distributed-feedback laser diode at 1120 nm. The performance of the system using two different master oscillator schemes is compared. A pulse energy of up to 765 nJ is achieved with a conversion efficiency of 25% from the ytterbium fiber pump, demonstrating a compact and turn-key architecture for obtaining high peak-power radiation at 560 nm.

Journal article

Runcorn T, Legg T, murray RT, kelleher EJR, popov SV, taylor JRet al., 2015, Fiber-integrated frequency-doubling of a picosecond Raman laser to 560 nm, Optics Express, Vol: 23, Pages: 15728-15733, ISSN: 1094-4087

We report the development of a fiber-integrated picosecond source at 560 nm by second harmonic generation of a Raman fiber laser. A picosecond ytterbium master oscillator power fiber amplifier is used to pulse-pump a Raman amplifier, which is seeded by a continuous wave distributed feedback laser diode operating at 1120 nm. The pulse train generated at 1120 nm is frequency-doubled in a fiber-coupled periodically-poled lithium niobate crystal module, producing 450 mW of average power at 560 nm with a pulse duration of 150 ps at a repetition rate of 47.5 MHz. The near diffraction-limited (M2 = 1.02) collimated output beam is ideal for super-resolution microscopy applications.

Journal article

Zhang M, Howe RCT, Woodward RI, Kelleher EJR, Torrisi F, Hu G, Popov SV, Taylor JR, Hasan Tet al., 2015, Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser, Nano Research, Vol: 8, Pages: 1522-1534, ISSN: 1998-0000

We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a wideband tunable, ultrafast mode-locked fiber laser. Stable, picosecond pulses, tunable from 1,535 nm to 1,565 nm, are generated, corresponding to photon energies below the MoS2 material bandgap. These results contribute to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

Journal article

Woodward, Kelleher EJR, Runcorn TH, Loranger S, Popa D, Wittwer VJ, Ferrari AC, Popov SV, Kashyap R, Taylor JRet al., 2015, Fiber grating compression of giant-chirped nanosecond pulses from an ultra-long nanotube mode-locked fiber laser, Optics Letters, Vol: 40, Pages: 387-390, ISSN: 1539-4794

We demonstrate that the giant chirp of coherent, nanosecond pulses generated in an 846 m long, all-normal dispersion, nanotube mode-locked fiber laser can be compensated using a chirped fiber Bragg grating compressor. Linear compression to 11 ps is reported, corresponding to an extreme compression factor of ∼100. Experimental results are supported by numerical modeling, which is also used to probe the limits of this technique. Our results unequivocally conclude that ultra-long cavity fiber lasers can support stable dissipative soliton attractors and highlight the design simplicity for pulse-energy scaling through cavity elongation.

Journal article

Runcorn TH, Murray RT, Kelleher EJR, Popov SV, Taylor JRet al., 2015, Watt-level, Duration-tunable Picosecond Source at 560 nm by Second-harmonic Generation of a Raman Fiber Laser

Conference paper

Woodward RI, Kelleher EJR, Runcorn TH, Loranger S, Popa D, Wittwer VJ, Ferrari AC, Popov SV, Kashyap R, Taylor JRet al., 2015, Nanosecond to picosecond fiber bragg grating compression of giant-chirped pulses from an ultra-long mode-locked fiber laser

Conference paper

Legg T, Robertson A, Eckardt R, Runcorn T, Hu D, Murray R, Kelleher E, Popov S, Taylor Jet al., 2015, Fiber-Integrated Second Harmonic Generation Modules for Visible and Near-Visible Picosecond Pulse Generation, Conference on Nonlinear Frequency Generation and Conversion - Materials, Devices, and Applications XIV, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00005834&limit=30&person=true