Imperial College London

ProfessorJulianGriffin

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Visiting Professor
 
 
 
//

Contact

 

+44 (0)20 7594 3220julian.griffin

 
 
//

Location

 

Sir Alexander Fleming BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Savic:2021:10.3390/metabo11030191,
author = {Savic, D and Ball, V and Curtis, MK and Sousa, Fialho MDL and Timm, KN and Hauton, D and West, J and Griffin, J and Heather, LC and Tyler, DJ},
doi = {10.3390/metabo11030191},
journal = {Metabolites},
title = {L-Carnitine Stimulates In Vivo Carbohydrate Metabolism in the Type 1 Diabetic Heart as Demonstrated by Hyperpolarized MRI.},
url = {http://dx.doi.org/10.3390/metabo11030191},
volume = {11},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The diabetic heart is energetically and metabolically abnormal, with increased fatty acid oxidation and decreased glucose oxidation. One factor contributing to the metabolic dysfunction in diabetes may be abnormal handling of acetyl and acyl groups by the mitochondria. L-carnitine is responsible for their transfer across the mitochondrial membrane, therefore, supplementation with L-carnitine may provide a route to improve the metabolic state of the diabetic heart. The primary aim of this study was to use hyperpolarized magnetic resonance imaging (MRI) to investigate the effects of L-carnitine supplementation on the in vivo metabolism of [1-13C]pyruvate in diabetes. Male Wistar rats were injected with either vehicle or streptozotocin (55 mg/kg) to induce type-1 diabetes. Three weeks of daily i.p. treatment with either saline or L-carnitine (3 g/kg/day) was subsequently undertaken. In vivo cardiac function and metabolism were assessed with CINE and hyperpolarized MRI, respectively. L-carnitine supplementation prevented the progression of hyperglycemia, which was observed in untreated streptozotocin injected animals and led to reductions in plasma triglyceride and ß-hydroxybutyrate concentrations. Hyperpolarized MRI revealed that L-carnitine treatment elevated pyruvate dehydrogenase flux by 3-fold in the diabetic animals, potentially through increased buffering of excess acetyl-CoA units in the mitochondria. Improved functional recovery following ischemia was also observed in the L-carnitine treated diabetic animals.
AU - Savic,D
AU - Ball,V
AU - Curtis,MK
AU - Sousa,Fialho MDL
AU - Timm,KN
AU - Hauton,D
AU - West,J
AU - Griffin,J
AU - Heather,LC
AU - Tyler,DJ
DO - 10.3390/metabo11030191
PY - 2021///
SN - 2218-1989
TI - L-Carnitine Stimulates In Vivo Carbohydrate Metabolism in the Type 1 Diabetic Heart as Demonstrated by Hyperpolarized MRI.
T2 - Metabolites
UR - http://dx.doi.org/10.3390/metabo11030191
UR - https://www.ncbi.nlm.nih.gov/pubmed/33806953
VL - 11
ER -