Imperial College London

DrJunJiang

Faculty of EngineeringDepartment of Mechanical Engineering

Senior Lecturer
 
 
 
//

Contact

 

jun.jiang

 
 
//

Location

 

524City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Metal Processing Technology - MECH97093

Aims

Many industrial metal processes and applications involve shaping engineering components via plastic/viscoplastic deformation. These metal forming technologies are used for the manufacture of a range of metal components, such as automotive and aircraft body panels.  This module extends basic solid-mechanics concepts and methods to the modelling and analysis of viscoplastic flow and of metal microstructure evolution during metal forming processes.  It aims to provide a comprehensive survey of the analysis and simulation methods available, and practical exercises in their use. In particular:

  • To introduce plasticity and viscoplasticity theories underpinning metal plasticity technologies
  • To introduce theories for formulating unified constitutive equations for metal processing applications.
  • To extend plasticity and viscoplasticity theories for advanced metal forming applications
  • To introduce numerical techniques for advanced materials and process modelling.

ECTS units:    10

Role

Associate Course Leader

Materials 2 - MECH50005

Aims

Provides the tools and understanding to predict component failures under multiaxial loading 

conditions due to yielding, fracture, fatigue and creep mechanisms, to identify these failure mechanisms in practice, and to design against them.

ECTS units: 5

Role

Associate Course Leader

Metal Processing Technology - MECH97055

Aims

Many industrial metal processes and applications involve shaping engineering components via plastic/viscoplastic deformation. These metal forming technologies are used for the manufacture of a range of metal components, such as automotive and aircraft body panels.  This module extends basic solid-mechanics concepts and methods to the modelling and analysis of viscoplastic flow and of metal microstructure evolution during metal forming processes.  It aims to provide a comprehensive survey of the analysis and simulation methods available, and practical exercises in their use. In particular:

  • To introduce plasticity and viscoplasticity theories underpinning metal plasticity technologies
  • To introduce theories for formulating unified constitutive equations for metal processing applications.
  • To extend plasticity and viscoplasticity theories for advanced metal forming applications
  • To introduce numerical techniques for advanced materials and process modelling.

ECTS units:    12   

Contributing to course element:  12    ME4-LCTVS Electives

Role

Associate Course Leader

Metal Processing Technology (PG) - MECH97029

Aims

Many industrial metal processes and applications involve shaping engineering components via plastic/viscoplastic deformation. These metal forming technologies are used for the manufacture of a range of metal components, such as automotive and aircraft body panels.  This module extends basic solid-mechanics concepts and methods to the modelling and analysis of viscoplastic flow and of metal microstructure evolution during metal forming processes.  It aims to provide a comprehensive survey of the analysis and simulation methods available, and practical exercises in their use. In particular:

  • To introduce plasticity and viscoplasticity theories underpinning metal plasticity technologies
  • To introduce theories for formulating unified constitutive equations for metal processing applications.
  • To extend plasticity and viscoplasticity theories for advanced metal forming applications
  • To introduce numerical techniques for advanced materials and process modelling.

ECTS units:    12   

Contributing to course element:  12    ME4-LCTVS Electives

Role

Associate Course Leader