Overview
My primary research interests are in experimental and theoretical fluid mechanics and include the creation of novel experimental and analytical tools for the study of complex flow phenomena appearing in turbulent flows.
Dynamic mixing

Fractal impellers
Many applications in the pharmaceutical industry require a mixer which generates high levels of turbulence to reduce mixing times, high homogeneity of turbulence for homogeneous end results, and low shear to protect shear sensitive cells. These conditions are very challenging to fulfill simultaneously, but can be approached with the use of fractal mixers. Figure: Wake of Regular and Fractal Mixing Impellers
Unsteady Stirred Tanks
Recent experiments have shown that a way to drastically increase mixing efficiency in dynamic mixers is to operate them in an unsteady manner (e.g. by continuously accelerating and decelerating the impeller). To design such unsteady mixers we must first model their unsteady flow characteristics. A first step towards that goal is the modeling of quasi-stationary transient processes in dynamic mixers.
Wind Energy

Wind turbine modeling & Characterization
We are developing analytical aerodynamical models for wind turbine and wind farm flows, which we validate using laboratory and numerical experiments of wind turbines.
high reynolds number facilities
Together with collaborators at Princeton University, we are constructing pressurized facilities, which will be used to test wind turbines and wind farms under dynamic similarity.
Non-equilibrium turbulence

The classical phenomenology of Kolmogorov is valid only asymptotically, for very large Reynolds numbers, and very small scales, where the turbulence cascade is in "equilibrium". At larger scales, non-equilibrium effects become important and Kolmogorov's predictions become increasingly invalid. To address this issue, we are developing novel models, for both homogeneous and inhomogenous turbulence flows, which are validated using laboratory and numerical experiments.