Imperial College London

DrKaiWang

Faculty of EngineeringDepartment of Chemical Engineering

 
 
 
//

Contact

 

kai.wang

 
 
//

Location

 

B432ABCACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

57 results found

Teng J, Zhu S, Wei X, Qi Y, Zhi X, Bao S, Qiu L, Wang Ket al., 2024, Roles of catalysts’ porous media feature and catalytic conversion effect on the performance of plate-fin heat exchangers in hydrogen liquefaction, International Journal of Heat and Mass Transfer, Vol: 218, ISSN: 0017-9310

Ortho-para hydrogen conversion is essential for hydrogen liquefaction and filling catalysts inside channels of plate-fin heat exchangers (PFHXs) is the most efficient method of conversion. However, the roles of the catalysts’ porous media feature and catalytic conversion effect on the performance of PFHXs filled with ortho-para hydrogen conversion catalysts are barely discussed. Three cases, i.e., Case A (normal PFHX), Case B (PFHX filled with non-catalytic particles acting as porous media), and Case C (PFHX filled with catalysts), are numerically studied and compared to illustrate the influence of filled ortho-para hydrogen conversion catalysts on the performance of the PFHX. The thermal-hydraulic performance coefficient (ηTHP) is defined to illustrate the combined performance of thermal (j factor) and hydraulic performance (f factor), and the conversion efficiency (ηCON) is defined to evaluate the conversion performance of the heat exchanger. The comparison between Case A and Case B shows that the particles acting as porous media restrain the hydraulic performance of normal PFHX while enhance the thermal performance. In comparison with Case B, as the ortho-para hydrogen conversion effect is considered in Case C, j factor is reduced by 1.8 % and the flow resistance is increased by 8.9 %, denoting that the conversion heat leads to deterioration of heat transfer and hydraulic performance. Parametric analyses show that, when the Reynolds number rises from 214.0 to 1569.1, ηTHP and ηCON in Case C increase by 304.9 % and 10.2 % respectively, implying that the Reynolds number is quite influential to the performance. Beside, the proportion of conversion heat in the total heat flux rises along the flow direction and tends to level off, reaching about 45 %.

Journal article

Zhu S, Teng J, Zhi X, Bao S, Qiu L, Wang Ket al., 2023, Numerical study on comprehensive performance of flow and heat transfer coupled with ortho-para hydrogen conversion, International Journal of Heat and Mass Transfer, Vol: 201, ISSN: 0017-9310

The energy consumption of hydrogen liquefaction can be effectively reduced by filling the plate-fin heat exchanger with the catalyst to achieve continuous conversion of ortho-para hydrogen while cooling. In this study, a three-dimensional numerical model of heat transfer and flow coupled with ortho-para hydrogen conversion is established, and the simulation results are verified by the experimental data. Both the temperature field and the outlet parahydrogen fraction demonstrate better accuracy of the local thermal non-equilibrium model results compared to the local thermal equilibrium model results, and the thermal non-equilibrium effect is most significant at the inlet of the porous medium, where the temperature difference between the fluid and the solid exceeds 2 K. Furthermore, it is indicated that two typical stages exist in the hot channel: the heat transfer dominates in the inlet section and the ortho-para hydrogen conversion efficiency decreases significantly, even once falling below 30%. In the thermal fully developed section, the catalytic performance is effectively improved along with the decay of velocity, with a 10% improvement compared to the lowest point of performance. Finally, an integrated comprehensive performance evaluation criterion is summarized regarding the overall performance of heat transfer, flow and catalysis, with excellent comprehensive performance being achieved at Reynolds numbers of 170 to 300. This research can provide a reference for the comprehensive performance study of catalyst-filled plate-fin heat exchanger for hydrogen.

Journal article

Zhou X, Zhang H, Rong Y, Song J, Fang S, Xu Z, Zhi X, Wang K, Qiu L, Markides CNet al., 2022, Comparative study for air compression heat recovery based on organic Rankine cycle (ORC) in cryogenic air separation units, Energy, Vol: 255, Pages: 124514-124514, ISSN: 0360-5442

The annual energy consumption of the cryogenic air separation units (ASUs) reaches 205 TWh in China, over 80% of which is consumed in the compression processes while over 60% of the compression work is dissipated as waste heat. Efficient recovery and utilization of this amount of heat is expected to bring significant economic and environmental benefits. Organic Rankine cycle (ORC) based waste heat recovery systems for generating extra electricity or/and cooling the inlet air of the air compressors are proposed to achieve power saving and evaluated in terms of thermodynamic, economic and environmental metrics. These include an ORC-based electric generator (ORC-e) for extra electricity, an electrically coupled ORC and vapor compression refrigerator (ORC-e-VCR) and a mechanically coupled ORC and VCR (ORC-m-VCR) for extra electricity and compression power saving. A 60,000-Nm3/h scale cryogenic ASUs is selected for case studies and influence of the feed-air temperature and humidity is focused in the analyses. The results show that among these three systems, the ORC-m-VCR and ORC-e-VCR systems have similar performance when the expansion work-electricity conversion efficiency (ηe) is 90%, reaching the highest energy saving ratio of 11.7% and economic benefits with net present value achieving 154 million CNY. The ORC-m-VCR system outperforms the other two systems with ηe of 60% and 30%. This work presents comprehensive comparison of various heat recovery systems and provides practical guidance for configuration selection and design to achieve effective energy saving in air compression processes.

Journal article

Madurai Elavarasan R, Mudgal V, Selvamanohar L, Wang K, Huang G, Shafiullah GM, Markides CN, Reddy KS, Nadarajah Met al., 2022, Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review, Energy Conversion and Management, Vol: 255, Pages: 1-31, ISSN: 0196-8904

Photovoltaic (PV) panels convert a portion of the incident solar radiation into electrical energy and the remaining energy (>70 %) is mostly converted into thermal energy. This thermal energy is trapped within the panel which, in turn, increases the panel temperature and deteriorates the power output as well as electrical efficiency. To obtain high-efficiency solar photovoltaics, effective thermal management systems is of utmost. This article presents a comprehensive review that explores recent research related to thermal management solutions as applied to photovoltaic technology. The study aims at presenting a wide range of proposed solutions and alternatives in terms of design approaches and concepts, operational methods and other techniques for performance enhancement, with commentary on their associated challenges and opportunities. Both active and passive thermal management solutions are presented, which are classified and discussed in detail, along with results from a breadth of experimental efforts into photovoltaic panel performance improvements. Approaches relying on radiative, as well as convective heat transfer principles using air, water, heat pipes, phase change materials and/or nanoparticle suspensions (nanofluids) as heat-exchange media, are discussed while including summaries of their unique features, advantages, disadvantages and possible applications. In particular, hybrid photovoltaic-thermal (PV-T) collectors that use a coolant to capture waste heat from the photovoltaic panels in order to deliver an additional useful thermal output are also reviewed, and it is noted that this technology has a promising potential in terms of delivering high-efficiency solar energy conversion. The article can act as a guide to the research community, developers, manufacturers, industrialists and policymakers in the design, manufacture, application and possible promotion of high-performance photovoltaic-based technologies and systems.

Journal article

Harikumar G, Shen L, Wang K, Dubey S, Duan Fet al., 2022, Transient Thermofluid simulation of a Hybrid Thermoacoustic system, INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, Vol: 183, ISSN: 0017-9310

Journal article

Fang S, Xu Z, Zhang H, Rong Y, Zhou X, Zhi X, Wang K, Markides CN, Qiu Let al., 2021, High-performance multi-stage internally-cooled liquid desiccant dehumidifier for high gas-liquid flow ratios, Energy Conversion and Management, Vol: 250, Pages: 1-14, ISSN: 0196-8904

Liquid desiccant dehumidification provides a pathway to high-flow air pretreatment of air compressors for en-ergy savings. However, high air-to-solution flow ratios (i.e., over 4.0) may result in an unacceptable decrease in dehumidification effectiveness, and few studies have managed to overcome this challenge. This study aims to experimentally demonstrate that the multi-stage internally-cooled liquid desiccant dehumidifier (MILDD) is capable of improving the effectiveness at extremely high air-to-solution flow ratios over 10.0. A laboratory bench of the MILDD is designed and tested in various operational conditions. Based on the finite difference model, the experimental results of dehumidification effectiveness are analyzed in terms of the heat and mass transfer process such as irreversible loss and driving forces. The specific cooling capacity associated with the energy efficiency is further studied by considering different desiccant regeneration efficiency. In addition, the experimental latent effectiveness from present and previous work is compared and correlated. Results show that the measured latent effectiveness of the MILDD exceeds 0.42 and goes even up to 1.02 at high air-to-solution flow ratios, i.e., 8.6–20.1, while existing liquid desiccant dehumidifiers maintain a comparable effectiveness only at much lower flow ratios, i.e., below 4.0. The proposed model and correlation also have been validated with a considerable accuracy for predicting the performance of internally-cooled dehumidifiers. This work has experimentally demonstrated the ability of the multi-stage internally-cooled liquid desiccant dehumidifier to overcome the low effectiveness at high gas–liquid flow ratios, which advances the potential application of liquid desiccant dehu-midification in the air compression process.

Journal article

Xiao G, Qiu H, Wang K, Wang Jet al., 2021, Working mechanism and characteristics of gas parcels in the Stirling cycle, Energy, Vol: 229, ISSN: 0360-5442

The Stirling engine is a promising device to efficiently utilize external heat sources for various purposes. The understanding of the thermodynamic cycle of the gas parcels present in the Stirling engine is vital to its design and optimization. In this paper, a one-dimensional transient numerical model for Stirling engines is developed. A system for a β-type prototype was built and investigated by using both experimental and numerical methods. The relative error between the experimental and theoretical results measures <6%. A post-processing method was further defined to track the gas parcels. Moreover, the Lagrange perspective was introduced to quantitatively describe the thermodynamic cycles, capturing the working mechanism of the gas parcels. The findings show that all the gas parcels produce periodic heat-to-work conversions despite their different thermodynamic cycles. The relay-style trend of adjacent gas parcels was observed in both the pressure-specific volume and the temperature-specific entropy diagrams. Finally, the thermodynamic processes of different volume phase angles were compared, showing that the specific work increases from 105.5 kJ/kg to 242.8 kJ/kg when the phase angle changes from 30° to 90°. This work provides a mesoscopic view to understand the working mechanism and build a solid foundation for the optimization of Stirling engines.

Journal article

Huang G, Wang K, Riera Curt S, Franchetti B, Pesmazoglou I, Markides Cet al., 2021, On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors, Renewable Energy, Vol: 174, Pages: 590-605, ISSN: 0960-1481

Concentrating fluid-based spectral-splitting hybrid PV-thermal (SSPVT) collectors are capable of high electrical and thermal efficiencies, as well as high-temperature thermal outputs. However, the optimal optical filter and the maximum potential of such collectors remain unclear. In this study, we develop a comprehensive two-dimensional model of a fluid-based SSPVT collector. The temperature distributions reveal that these designs are effective in thermally decoupling the PV module from the high-temperature filter flow-channel, improving the electrical performance of the module. For a Si solar cell-based SSPVT collector with optical filter #Si400-1100, the filter channel is able to produce high-temperature thermal energy (400 °C) with an efficiency of 19.5%, low-temperature thermal energy (70 °C) with an efficiency of 49.5%, and electricity with an efficiency 17.5%. Of note is that the relative fraction of high-temperature thermal energy, low-temperature thermal energy and electricity generated by such a SSPVT collector can be adjusted by shifting the upper- and lower-bound cut-off wavelengths of the optical filter, which are found to strongly affect the spectral and energy distributions through the collector. The optimal upper-bound cut-off always equals the bandgap wavelength of the solar cell material (e.g., 1100 nm for Si, and 850 nm for CdTe), while the optimal lower-bound cut-off follows more complex selection criteria. The SSPVT collector with the optimal filter has a significantly higher total effective efficiency than an equivalent conventional solar-thermal collector when the relative value of the high-temperature heat to that of electricity is lower than 0.5. Detailed guidance for selecting optimal filters and their role in controlling SSPVT collector performance under different conditions is provided.

Journal article

Song J, Wang Y, Wang K, Wang J, Markides CNet al., 2021, Combined supercritical CO2 (SCO2) cycle and organic Rankine cycle (ORC) system for hybrid solar and geothermal power generation: Thermoeconomic assessment of various configurations, Renewable Energy, Vol: 174, Pages: 1020-1035, ISSN: 0960-1481

Hybrid solar and geothermal utilisation is a promising option for effective exploitation of renewable energy sources. Concentrated solar power (CSP) systems with geothermal preheating are acknowledged as an attractive solution, with supercritical CO2 (SCO2) cycle systems adopted for power generation thanks to the favourable properties offered by CO2 as a working fluid. In order to further improve the overall performance of such systems, organic Rankine cycle (ORC) systems can be added as bottoming cycles to recover the heat rejected from the topping SCO2 cycle system and also to utilise surplus geothermal heat available after the brine is used for preheating in the SCO2 system. This paper proposes four configurations of combined SCO2-ORC system for hybrid solar and geothermal power generation and performs detailed thermodynamic and economic assessments based on actual conditions in Seville, Spain. The results reveal that combined systems in which the geothermal-brine stream is split into two parallel flows and utilised separately by the topping SCO2 cycle and bottoming ORC systems are preferable. A split geothermal-stream combined system with the ORC working fluid first utilising geothermal heat followed in series by heat from the topping SCO2 cycle system delivers a net power output of 2940 kW, which is the maximum among all the proposed configurations and is 45% higher than that of a standalone SCO2 plant. A similar combined system with a reversed ORC flow direction such that the organic fluid is preheated first by utilising heat from the SCO2 cycle system and then by geothermal heat has a specific cost corresponding to the maximum net power output of 2880 $/kW, which is the lowest among all the configurations and is 22% lower than that of the standalone SCO2 plant. Annual performance evaluation shows that the combined systems can achieve significant improvements, ranging from 22% to 45%, over the total electricity generation of the standalone SCO2 plant, which de

Journal article

Shen L, Harikumar G, Wang K, Duan Fet al., 2021, Flow visualization in a hybrid thermoacoustic system, EXPERIMENTAL THERMAL AND FLUID SCIENCE, Vol: 125, ISSN: 0894-1777

Journal article

Fang S, Zhou X, Rong Y, Zhi X, Wang K, Qiu Let al., 2021, Multi-stage internally-cooled membrane-based liquid desiccant dehumidifiers: Driving-force based insights into structural improvement, INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, Vol: 171, ISSN: 0017-9310

Journal article

Qiu H, Wang K, Yu P, Ni M, Xiao Get al., 2021, A third-order numerical model and transient characterization of a β-type Stirling engine, Energy, Vol: 222, ISSN: 0360-5442

Stirling engine is a promising prime mover for distributed energy systems, and a reliable analysis model is essential to design different engines with various applications. In this paper, a third-order model for the Stirling engine is developed, considering the effects of pressure gradient of oscillating flow and main losses of heat and power. For the GPU-3 with hydrogen, the average relative errors between the simulated results and the experimental data are 10.76% and 5.86% for the indicated power and the indicated efficiency, respectively. The proposed model can provide transient information of pressure, temperature, Reynolds and Nusselt numbers, which are key parameters in the Stirling engine. The transient characteristics and the spatial distributions of Stirling cycles are investigated based on a 100-W prototype. The results show that the pressure drop on the regenerator is more than 95% of the total pressure drop, and increases almost linearly with the rotary speed. Limited amplitude change and nearly axial distribution are observed on the gas temperature of the regenerator. The pressure-volume diagrams predicted by the proposed model are close to the experimental data, indicating that the presented model predicts the transient performance of Stirling engines with reasonable accuracy.

Journal article

Huang G, Wang K, Markides CN, 2021, Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems, Light: Science and Applications, Vol: 10, Pages: 1-1, ISSN: 2047-7538

Spectral splitting is an approach to the design of hybrid photovoltaic-thermal (PVT) collectors that promises significant performance benefits. However, the ultimate efficiency limits, optimal PV cell materials and optical filters of spectral-splitting PVT (SSPVT) collectors remain unclear, with a lack of consensus in the literature. We develop an idealized model of SSPVT collectors and use this to determine their electrical and thermal efficiency limits, and to uncover how these limits can be approached through the selection of optimal PV cell materials and spectral-splitting filters. Assuming that thermal losses can be minimized, the efficiency limit, optimal PV material and optimal filter all depend strongly on a coefficient w, which quantifies the value of the delivered thermal energy relative to that of the generated electricity. The total (electrical plus thermal) efficiency limit of SSPVT collectors increases at higher w and at higher optical concentrations. The optimal spectral-splitting filter is defined by sharp lower- and upper-bound energies; the former always coincides with the bandgap of the cell, whereas the latter decreases at higher w. The total effective efficiency limit of SSPVT collectors is over 20% higher than those of either standalone PV modules or standalone ST collectors when w is in the range from 0.35 to 0.50 and up to 30% higher at w ≈ 0.4. This study provides a method for identifying the efficiency limits of ideal SSPVT collectors and reports these limits, along with guidance for selecting optimal PV materials and spectral-splitting filters under different conditions and in different applications.

Journal article

Zhu S, Zhi X, Gu C, Qiu L, Wang Ket al., 2021, Characteristic analysis of fluctuating liquid film flow behavior and heat transfer in nitrogen condensation, Applied Thermal Engineering, Vol: 184, ISSN: 1359-4311

Liquid film fluctuation is supposed to be an important mean of film condensation enhancement for the cryogenic fluids with extremely low surface tension. However, the flow characteristics of the cryogenic liquid film in condensation process are seldom observed and revealed due to the difficulty of cryogenic experiment. In this study, the flow behavior and heat transfer of the fluctuating liquid film in nitrogen condensation are discussed by CFD simulation. A numerical model of nitrogen condensation on a vertical plate is established in accordance to a practical experimental setup, and is further validated with a good accuracy using the experimental data. The liquid film thickness, wave velocity and wall shear force are then analyzed. Statistical tools are employed to reveal the probability distribution of the film thickness and the frequency domain characteristics of the heat transfer coefficient. The FFT analysis of the heat transfer coefficient shows the interface waves around 30 Hz can induce a stronger fluctuation effect and bring about a better heat transfer performance. The velocity in the large solitary wave is regulated by the wall shear force, and a more appropriate correlation is proposed to reveal the physical properties of the solitary wave, which manifests as rolling on the film substrate. In addition, the simulation reveals that an important reason leading to the higher heat transfer coefficient in the experiments than that predicted by the Nusselt's theory is the decrease of film substrate thickness and the increasing probability of thinner liquid film during practical liquid fluctuating. It can be inferred that the condensation process of fluctuating liquid film is an effective way to enhance the heat transfer for cryogenic fluids.

Journal article

Chen G, Wang Y, Tang L, Wang K, Yu Zet al., 2020, Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine, Applied Energy, Vol: 276, ISSN: 0306-2619

In this paper, a comprehensive high-fidelity three-dimensional computational fluid dynamic research using large eddy simulation has been conducted to investigate a standing-wave quarter-wavelength thermoacoustic engine that consists of a hot buffer, a stack and a resonator. The performance of the thermoacoustic engine has been analysed in four aspects. Firstly, the dynamic characteristics of the engine during the initial start-up process are investigated when changing the temperature gradient imposed on the stack. Numerical results are compared with those from a system-wide reduced-order network model based on linear thermoacoustic theory. Secondly, the acoustic behaviour of the engine operating at steady state is studied. Fourier Series Model is utilized to decompose the steady-state acoustic pressure oscillations which reveals the unstable longitudinal acoustic modes excited in the engine. The stack serves as an energy source for the fundamental mode while it extracts acoustic power from the second harmonic. Thirdly, the hydrodynamic performances of the engine are inspected, and the obtained three-dimensional flow fields inside the engine enable us to probe into rich nonlinear phenomena including minor losses, mass streaming, etc. Finally, the heat transfer characteristics have been analysed by examining the mean temperature field and transversal heat fluxes along the engine. This research demonstrates that the large eddy simulation framework is effective in simulating the thermally induced oscillatory flow inside thermoacoustic engines. The multi-perspective analytical methodologies are valuable in comprehending the engine performance and provide guidelines for the design and optimization of efficient thermoacoustic engines for recovering waste thermal energy from various sources.

Journal article

Fan S, Jiao L, Wang K, Duan Fet al., 2020, Pool boiling heat transfer of saturated water on rough surfaces with the effect of roughening techniques, International Journal of Heat and Mass Transfer, Vol: 159, ISSN: 0017-9310

The effect of surface roughness on pool boiling heat transfer was experimentally investigated in the saturated water. Eight testing surfaces were fabricated on plain copper through three preparation methods including random polishing, unidirectional polishing, and femtosecond laser machining. The surface roughness in the present study is characterized by the areal (three dimensional, 3D) roughness parameter. In the two dimensional (2D) profile roughness analysis, we know that a profile can be separated into the large-scale component (waviness) and the short-scale component (roughness). The arithmetical mean height of the profile, the waviness and the roughness are denoted as Pa, Wa, and Ra, respectively. However, there are no such kind of parameters defined in the 3D roughness analysis. To distinguish them, we define Sap and Sa in this study, corresponding to Pa and Ra in the 2D roughness parameters. The pool boiling experiments show that a rougher surface has higher heat transfer coefficient than a smoother one only within the same surface preparation method, if the surface roughness is characterized by Sap. For the surfaces prepared by the different techniques, the laser processed rough surface with Sap=3.40 µm could have deteriorated heat transfer coefficient compared with the relatively smooth one polished by the 180 grit sandpaper with Sap=1.29µm. However, the different trend is observed when the surface roughness is characterized by Sa. By applying a standardized filtration process, the large-scale component of the surface can be removed, and the areal arithmetical mean height calculated from the remaining part is denoted as Sa. The boiling curves are found to shift monotonically to the left as Sa becomes larger, regardless of the surface preparation methods. The enhancement in heat transfer coefficient of rougher surfaces is attributed to a combined result of larger nucleation sites, smaller departure bubbles and higher bubble departure frequencie

Journal article

Wang K, Pantaleo AM, Herrando M, Faccia M, Pesmazoglou I, Franchetti BM, Markides CNet al., 2020, Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms, Renewable Energy, Vol: 159, Pages: 1047-1065, ISSN: 0960-1481

Dairy farming is one of the most energy- and emission-intensive industrial sectors, and offers noteworthy opportunities for displacing conventional fossil-fuel consumption both in terms of cost saving and decarbonisation. In this paper, a solar-combined heat and power (S–CHP) system is proposed for dairy-farm applications based on spectral-splitting parabolic-trough hybrid photovoltaic-thermal (PVT) collectors, which is capable of providing simultaneous electricity, steam and hot water for processing milk products. A transient numerical model is developed and validated against experimental data to predict the dynamic thermal and electrical characteristics and to assess the thermoeconomic performance of the S–CHP system. A dairy farm in Bari (Italy), with annual thermal and electrical demands of 6000 MWh and 3500 MWh respectively, is considered as a case study for assessing the energetic and economic potential of the proposed S–CHP system. Hourly simulations are performed over a year using real-time local weather and measured demand-data inputs. The results show that the optical characteristic of the spectrum splitter has a significant influence on the system’s thermoeconomic performance. This is therefore optimised to reflect the solar region between 550 nm and 1000 nm to PV cells for electricity generation and (low-temperature) hot-water production, while directing the rest to solar receivers for (higher-temperature) steam generation. Based on a 10000-m2 installed area, it is found that 52% of the demand for steam generation and 40% of the hot water demand can be satisfied by the PVT S–CHP system, along with a net electrical output amounting to 14% of the farm’s demand. Economic analyses show that the proposed system is economically viable if the investment cost of the spectrum splitter is lower than 75% of the cost of the parabolic trough concentrator (i.e., <1950 €/m2 spectrum splitter) in this application. The influenc

Journal article

Huang G, Curt SR, Wang K, Markides CNet al., 2020, Challenges and opportunities for nanomaterials in spectral splitting for high-performance hybrid solar photovoltaic-thermal applications: A review, Nano Materials Science, Vol: 2, Pages: 183-203, ISSN: 2589-9651

Hybrid photovoltaic-thermal (PV-T) collectors, which are capable of cogenerating useful thermal energy and electricity from the same aperture area, have a significantly higher overall efficiency and ability to displace emissions compared to independent, separate photovoltaic panels, solar thermal collectors or combinations thereof. Spectral splitting has emerged as a promising route towards next-generation high-performance PV-T collectors, and nanotechnology plays an important role in meeting the optical and thermal requirements of advanced spectral splitting PV-T collector designs. This paper presents a comprehensive review of spectral splitting technologies based on nanomaterials for PV-T applications. Emerging nanomaterials (nanofluids, nanofilms and nanowires) suitable for achieving spectral splitting based on reflection, diffraction, refraction and/or absorption approaches in PV-T collectors are presented, along with the associated challenges and opportunities of these design approaches. The requirements from such materials in terms of optical properties, thermal properties, stability and cost are discussed with the aim of guiding future research and innovation, and developing this technology towards practical application. Nanofluids and nanofilms are currently the most common nanomaterials used for spectral splitting, with significant progress made in recent years in the development of these materials. Nevertheless, there still remains a considerable gap between the optical properties of currently-available filters and the desired properties of ideal filters. Aiming to instruct and guide the future development of filter materials, a simple generalized method is further proposed in this paper to identify optimal filters and efficiency limits of spectral splitting PV-T systems for different scenarios. It is found that the optimal filter of a spectral splitting PV-T system is highly sensitive to the value of thermal energy relative to that of electricity, which t

Journal article

Song J, Li X, Wang K, Markides CNet al., 2020, Parametric optimisation of a combined supercritical CO2 (S-CO2) cycle and organic Rankine cycle (ORC) system for internal combustion engine (ICE) waste-heat recovery, Energy Conversion and Management, Vol: 218, Pages: 1-15, ISSN: 0196-8904

Supercritical CO2 (S-CO2) power-cycle systems are a promising technology for waste-heat recovery from internal combustion engines (ICEs). However, the effective utilisation of the heat from both the exhaust gases and cooling circuit by a standalone S-CO2 cycle system remains a challenge due to the unmatched thermal load of these heat sources, while a large amount of unexploited heat is directly rejected in the system’s pre-cooler. In this paper, a combined-cycle system for ICE waste-heat recovery is presented that couples an S-CO2 cycle to a bottoming organic Rankine cycle (ORC), which recovers heat rejected from the S-CO2 cycle system, as well as thermal energy available from the jacket-water and exhaust-gas streams that have not been utilised by the S-CO2 cycle system. Parametric optimisation is implemented to determine operating conditions for both cycles from thermodynamic and economic perspectives. With a baseline case using a standalone S-CO2 cycle system for an ICE with a rated power output of 1170 kW, our investigation reveals that the combined-cycle system can deliver a maximum net power output of 215 kW at a minimum specific investment cost (SIC) of 4670 $/kW, which are 58% and 4% higher than those of the standalone S-CO2 cycle system, respectively. A range of ICEs of different sizes are also considered, with significant performance improvements indicating a promising potential of exploiting such combined-cycle systems. This work motivates the pursuit of further performance improvements to waste-heat recovery systems from ICEs and other similar applications.

Journal article

Al Kindi A, Markides C, Pantaleo A, Wang Ket al., 2020, Optimal system configuration and operation strategies of flexible hybrid nuclear-solar power plants, The 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Publisher: ECOS

Nuclear power plants are commonly used for baseload power supply due to their high reliability, low variable costs, as well as relatively low thermal efficiencies and limited load-following capabilities; especially, in the case of light water reactors. At the same time, concentrating solar power (CSP) technology is gaining attention, but is still considered an intermittent source of power with a limited availability factor. In an effort to propose a very different performance characteristic for both technologies, a hybrid power system combining nuclear and CSP plants and integrated with a thermal energy storage system is considered in this paper. The integration of the technologies is achieved by adding an indirect solar superheater and a solar reheater to a small modular nuclear reactor (NuScale). The work includes modelling of the integrated hybrid system, thermodynamic performance analysis and operational optimization aimed at maximizing the profitability of such a hybrid power plant in Oman. The results show that the hybrid system has the potential to deliver more efficient and flexible power (operating between 55% and 100% of nominal load) with the nuclear reactor operated continuously at its full rated power. The hybridization concept can potentially produce a competitive levelized cost of electricity, especially with the integration of thermal energy storage. The study concludes that the installation of such a system in Oman is not yet economically viable unless electricity tariffs increase by 70% to UK levels.

Conference paper

Rong Y, Zhi X, Wang K, Zhou X, Cheng X, Qiu L, Chi Xet al., 2020, Thermoeconomic analysis on a cascade energy utilization system for compression heat in air separation units, ENERGY CONVERSION AND MANAGEMENT, Vol: 213, ISSN: 0196-8904

Journal article

Herrando M, Pantaleo AM, Wang K, Markides CNet al., 2019, Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications, Renewable Energy, Vol: 143, Pages: 637-647, ISSN: 0960-1481

A modelling methodology is developed and used to investigate the technoeconomic performance of solar combined cooling, heating and power (S-CCHP) systems based on hybrid PVT collectors. The building energy demands are inputs to a transient system model, which couples PVT solar-collectors via thermal-store to commercial absorption chillers. The real energy demands of the University Campus of Bari, investment costs, relevant electricity and gas prices are used to estimate payback-times. The results are compared to: evacuated tube collectors (ETCs) for heating and cooling provision; and a PV-system for electricity provision. A 1.68-MWp S-CCHP system can cover 20.9%, 55.1% and 16.3% of the space-heating, cooling and electrical demands of the Campus, respectively, with roof-space availability being a major limiting factor. The payback-time is 16.7 years, 2.7-times higher than that of a PV-system. The lack of electricity generation by the ETC-based system limits its profitability, and leads to 2.3-times longer payback-time. The environmental benefits arising from the system’s operation are evaluated. The S-CCHP system can displace 911 tonsCO2/year (16% and 1.4× times more than the PV-system and the ETC-based system, respectively). The influence of utility prices on the systems’ economics is analysed. It is found that the sensitivity to these prices is significant.

Journal article

Wang K, Herrando M, Pantaleo AM, Markides CNet al., 2019, Technoeconomic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centres, Applied Energy, Vol: 254, Pages: 1-16, ISSN: 0306-2619

This paper presents a comprehensive analysis of the energetic, economic and environmental potentials of hybrid photovoltaic-thermal (PVT) and conventional solar energy systems for combined heat and power provision. A solar combined heat and power (S-CHP) system based on PVT collectors, a solar-power system based on PV panels, a solar-thermal system based on evacuated tube collectors (ETCs), and a S-CHP system based on a combination of side-by-side PV panels and ETCs (PV-ETC) are assessed and compared. A conventional CHP system based on a natural-gas-fired internal combustion engine (ICE) prime mover is also analysed as a competing fossil-fuel based solution. Annual simulations are conducted for the provision of electricity, along with space heating, swimming pool heating and hot water to the University Sports Centre of Bari, Italy. The results show that, based on a total installation area of 4000 m2 in all cases, the PVT S-CHP system outperforms the other systems in terms of total energy output, with annual electrical and thermal energy yields reaching 82.3% and 51.3% of the centre’s demands, respectively. The PV system is the most profitable solar solution, with the shortest payback time (9.4 years) and lowest levelised cost of energy (0.089 €/kWh). Conversely, the ETC solar-thermal system is not economically viable for the sports centre application, and increasing the ETC area share in the combined PV-ETC S-CHP system is unfavourable due to the low natural gas price. Although the PVT S-CHP system has the highest investment cost, the high annual revenue from the avoided energy bills elevates its economic performance to a level between those of the conventional PV and ETC-based S-CHP systems, with a payback time of 13.7 years and a levelised cost of energy of 0.109 €/kWh. However, at 445 tCO2/year, the CO2 emission reduction potential of the PVT S-CHP system is considerably higher (by 40–75%) than those of the all other solar systems (254&ndash

Journal article

Wang K, Pantaleo AM, Mugnozza GS, Markides CNet al., 2019, Technoeconomic assessment of solar combined heat and power systems based on hybrid PVT collectors in greenhouse applications, 10th International Conference On Indoor Air Quality (IAQVEC), Publisher: IOP Publishing, Pages: 072026-072026

This paper presents a technoeconomic analysis of a solar combined heat and power (S-CHP) system based on hybrid photovoltaic-thermal (PVT) collectors for distributed cogeneration in a greenhouse tomato-farm in Bari, Italy. The thermal and electrical demands of the greenhouse of interest are currently fulfilled by a gas-fired CHP system that features an internal combustion engine (ICE) prime mover, and partially by an auxiliary gas boiler and electricity from the grid. A PVT-water S-CHP system is designed and sized based on a transient model, with hourly weather data and measured demand data given as inputs. Annual simulations are performed to predict the transient behaviour of the S-CHP system and to assess the system’s energy outputs. The economic profitability of such solution is also evaluated by considering the investment costs and cost savings due to the reduced on-site energy consumption. The results show that, with an installation area of 30,000 m , the PVT S-CHP system is able to cover up to 73% of the annual thermal demand of the greenhouse, while delivering a net electrical output 2.6 times that of the annual electrical demand. This performance is similar to that achieved by the equivalent ICE-CHP system (92% and 2 times, respectively). Furthermore, the total annual cost saving of the PVT S-CHP system is more than 6 times higher than that of the ICE system, due to the much lower fuel cost of the PVT system. Similarly, the potential CO2 emission reduction associated with the PVT system is considerably higher, at 3010 tCO2/year saved (vs. 86 tCO2/year). The payback time of the PVT system is not significantly longer than that of the ICE system (10.4 years vs. 8.4 years), but its levelized cost of energy is much lower (0.076 €/kWh vs. 0.132 €/kWh) due to the higher annual cost savings. These results indicate that such PVT S-CHP systems have an excellent technoeconomic potential in the proposed greenhouse applications and could be competitive ov

Conference paper

Unamba CK, Sapin P, Li X, Song J, Wang K, Shu G, Tian H, Markides CNet al., 2019, Operational optimisation of a non-recuperative 1-kWe organic Rankine cycle engine prototype, Applied Sciences, Vol: 9, Pages: 3024-3024, ISSN: 2076-3417

Several heat-to-power conversion technologies are being proposed as suitable for waste-heat recovery (WHR) applications, including thermoelectric generators, hot-air (e.g., Ericsson or Stirling) engines and vapour-cycle engines such as steam or organic Rankine cycle (ORC) power systems. The latter technology has demonstrated the highest efficiencies at small and intermediate scales and low to medium heat-source temperatures and is considered a suitable option for WHR in relevant applications. However, ORC systems experience variations in performance at part-load or off-design conditions, which need to be predicted accurately by empirical or physics-based models if one is to assess accurately the techno-economic potential of such ORC-WHR solutions. This paper presents results from an experimental investigation of the part-load performance of a 1-kWe ORC engine, operated with R245fa as a working fluid, with the aim of producing high-fidelity steady-state and transient data relating to the operational performance of this system. The experimental apparatus is composed of a rotary-vane pump, brazed-plate evaporator and condenser units and a scroll expander magnetically coupled to a generator with an adjustable resistive load. An electric heater is used to provide a hot oil-stream to the evaporator, supplied at three different temperatures in the current study: 100, 120 and 140 ∘ C. The optimal operating conditions, that is, pump speed and expander load, are determined at various heat-source conditions, thus resulting in a total of 124 steady-state data points used to analyse the part-load performance of the engine. A maximum thermal efficiency of 4.2 ± 0.1% is reported for a heat-source temperature of 120 ∘ C, while a maximum net power output of 508 ± 2 W is obtained for a heat-source temperature at 140 ∘ C. For a 100- ∘ C heat source, a maximum exergy efficiency of 18.7 ± 0.3% is achieved. A detailed exergy analysis all

Journal article

Wang K, Markides C, 2019, Solar hybrid PV-thermal combined cooling, heating and power systems, The 5th International Conference on Polygeneration (ICP 2019), Publisher: ICP

We review hybrid photovoltaic-thermal (PV-T) technology for the combined provision of heating, coolingand power, present the state-of-the-art and outline recentprogress, including by researchers at the Clean Energy Processes (CEP) Laboratory,on aspects from component innovationto system integration,operational strategiesand assessmentsin key applications. Technologies appropriate for integration with PV-T collectors include thermal (hot and cold) and electrical storage, heat-driven heating/cooling (e.g., absorption,adsorption) and/orelectrically-driven heating/cooling (e.g., heat pump, air-conditioning)systems. Thermoeconomic assessments ofPV-Tcollectors integrated within wider solar-energy systems with such technologies inrepresentative applications have been conducted, including for energy provision to residential, commercial and public buildings, and industrial process heating applications. Studies have shown that PV-T technology has an excellent decarbonisation potential and can covera significant amount of the energy demandof end-users given reasonable areas. Further efforts relating to technology innovation and, primarily,cost reduction are required to improve its economiccompetitiveness over conventional fossil-fuel and other alternative solutions. Advanced heat-loss suppression techniques and spectral beam splitting concepts have emergedas promising directions for ground-breaking innovationin this area.

Conference paper

Unamba C, Li X, Song J, Wang K, Shu G, Tian H, Sapin P, Markides CNet al., 2019, Off-design performance of a 1-kWe organic Rankine cycle (ORC) system, 32nd International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2019), Publisher: ECOS

Several heat-to-power conversion technologies are being proposed as suitable for waste heat recovery (WHR) applications, including thermoelectric generators, hot-air (e.g., Ericsson or Stirling) engines, and vapour-cycle engines such as steam or organic Rankine cycle (ORC) power systems. The latter has demonstrated the highest efficiencies at low and intermediate scales and heat-source temperatures. However, ORC systems suffer a deterioration in performance at part-load or off-design conditions, and the high global warming potential (GWP) or flammability of common working fluids is an increasing concern. This paper presents the experimental investigation of a 1-kWe ORC test facility under time-varying heat-source conditions. It aims to compare the part-load performance of various architectures with different working fluids, namely: (i) R245fa, which is widely used in ORC systems, and (ii) low-GWP HFOs. The experimental apparatus is composed of a rotary-vane pump, brazed-plate evaporators and condensers, and a scroll expander with an adjustable load. An electric heater is used to provide a hot oil stream at three different temperatures: 80, 100 and 120 °C. The optimal operating conditions, i.e., pump speed and expander load, are determined for each architecture at various heat-source conditions. A maximum thermal efficiency of 2.8% is reported for a heat-source temperature of 100 °C, while a maximum net power output of 430 W is obtained for a heat source at 120 °C. An exergy analysis allows us to quantify the contribution of each component to the overall exergy destruction. The share of the evaporator, condenser and expander units remain major for all three heat-source conditions, while the exergy destroyed in the pump is negligible in comparison (below 4%).

Conference paper

Wang K, Pantaleo AM, Herrando M, Pesmazoglou I, Franchetti B, Markides Cet al., 2019, Thermoeconomic assessment of a spectral-splitting hybrid PVT system in dairy farms for combined heat and power, The 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2019)

Conference paper

Harraz AA, Freeman J, Wang K, Mac Dowell N, Markides CNet al., 2019, Diffusion-absorption refrigeration cycle simulations in gPROMS using SAFT-γ Mie, Energy Procedia, Vol: 158, Pages: 2360-2365, ISSN: 1876-6102

Diffusion-absorption refrigeration (DAR) is a clean thermally-powered refrigeration technology that can readily be activated by low- to medium-grade renewable heat. There is an ongoing interest in identifying or designing new working fluids for performance improvement, particularly in solar applications with non-concentrating solar collectors providing heat at temperatures < 150 °C. In this work, the state-of-the-art statistical associating fluid theory (SAFT) is adopted for predicting the thermodynamic properties of suitable DAR working fluids. A first-law thermodynamic analysis is performed in the software environment gPROMS for a DAR cycle using ammonia as the refrigerant, water as the absorbent and hydrogen as the auxiliary gas. The simulation results show good agreement with experimental data generated in a prototype DAR system with a nominal cooling capacity of 100 W. In particular, at a charge pressure of 17 bar and when delivering cooling at 5 °C, the model results agree with experimental COP data to within ± 7 % over a range of heat inputs from 150 to 500 W. The maximum coefficient of performance (COP) is estimated to be 0.24 at a heat input of 250 W. The group-contribution SAFT-γ Mie equation of state is of particular interest as it offers good agreement with experimental data and provides flexibility in extending the model to test different working fluids with a high degree of fidelity. A methodology is also presented that allows the DAR thermodynamic analysis and working-fluid modelling to be integrated into a more general technology optimisation framework.

Journal article

Wang K, Herrando M, Pantaleo AM, Markides CNet al., 2019, Thermoeconomic assessment of a PV/T combined heating and power system for University Sport Centre of Bari, 10th International Conference on Applied Energy (ICAE2018), Publisher: Elsevier, Pages: 1229-1234, ISSN: 1876-6102

This paper presents a thermoeconomic analysis of a solar combined heating and power (S-CHP) system based on hybridphotovoltaic-thermal (PV/T) collectors for the University Sport Centre (USC) of Bari, Italy. Hourly demand data for space heating,swimming pool heating, hot water and electricity provision as well as the local weather data are used as inputs to a transient modeldeveloped in TRNSYS. Economic performance is evaluated by considering the investment costs and the cost savings due to thereduced electricity and natural gas consumptions. The results show that 38.2% of the electricity demand can be satisfied by thePV/T S-CHP system with an installation area of 4,000 m2. The coverage increases to 81.3% if the excess electricity is fed to thegrid. In addition, the system can cover 23.7% of the space heating demand and 53.8% of the demands for the swimming pool andhot water heating. A comparison with an equivalent gas-fired internal combustion engine (ICE) CHP system shows that the PV/Tsystem has a higher payback time, i.e., 11.6 years vs. 3 years, but outperforms the ICE solution in terms of CO2 emission reduction,i.e., 435 tons CO2/year vs. 164 tons CO2/year. This work suggests that the proposed PV/T S-CHP system has a good potential ofdecarbonisation, while the economic competitiveness should be further enhanced to boost its deployment.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00983122&limit=30&person=true