Publications
335 results found
Leishman C, Mazzone S, Sun Y, et al., 2023, Manganese-based catalysts supported on carbon xerogels for the selective catalytic reduction of NOx using a hollow fibre-based reactor, Catalysis Today, ISSN: 0920-5861
As a more compact, affordable and efficient alternative to traditional catalytic converters, catalytic hollow fibre-based reactors have significant potential in addressing the high nitrogen oxides (NOx) emission associated with the combustion of green ammonia. In this work, the performance of a series of manganese (Mn)-based catalysts supported on three different carbon xerogels during the ammonia-selective catalytic reduction (NH3-SCR) reaction was investigated in a packed bed reactor configuration under typical vehicle exhaust gas conditions. The best catalyst candidate Mn-CX, which was associated with the highest NO conversion (i.e. 24% at 225 °C) and highest nitrogen selectivity (i.e. 85% at 225 °C), was deposited in a 7-channelled hollow fibre substrate via a combined sol-gel and incipient wetness impregnation method. At 225 °C and 1 atm, the performance of the hollow fibre-based reactor was enhanced by a factor of four compared to the packed bed reactor (i.e. rO2 = 3300 molO2∙m−3∙h−1∙gcat−1 and rO2 = 810 molO2∙m−3∙h−1∙gcat−1). The superior performance of the hollow fibre-based reactor is attributable to the unique morphology of the hollow fibre substrate, which lends itself to minimised mass transfer limitations. The markedly improved performance of the hollow fibre-based reactor underlines its potential as a technically and economically feasible solution to mitigate the high NOx emissions associated with ammonia combustion. The identification of the catalytic hollow fibre-based reactor as a viable exhaust gas after-treatment technology for green ammonia-fuelled engines, addresses a significant barrier facing the adoption of green ammonia as a carbon-free, future fuel, thereby facilitating the transition to a decarbonised transport sector.
Peng H, Shah V, Li K, 2022, Unprecedented water permeation in nanostructured PVDF membranes prepared by unidirectional freezing and surface melting method, JOURNAL OF MEMBRANE SCIENCE, Vol: 669, ISSN: 0376-7388
Prasetya N, Li K, 2022, Synthesis of defective MOF-801 via an environmentally benign approach for diclofenac removal from water streams, Separation and Purification Technology, Vol: 301, Pages: 1-12, ISSN: 1383-5866
Diclofenac is one of the most popular non-steroidal anti-inflammatory drugs (NSAIDs) which has been widely used worldwide. Despite its popularity, its accumulation in the environment poses danger to the aquatic lives and its removal from the environment is paramount important. Although some conventional adsorbents such as activated carbon can be readily used to address this issue, they usually suffer from low diclofenac adsorption capacity (around 200 mg g−1), resulting in bulky adsorption systems. To overcome this problem, high performance materials such as metal organic frameworks (MOFs) can be employed. Here, we report that we synthesised defective MOF-801 for enhanced diclofenac adsorption via a simple and environmentally benign approach. Differing from a conventional MOF synthesis that usually requires the use of organic solvents at high temperature, the defective MOF-801 could be synthesised at room temperature and by changing the reaction medium from dimethylformamide to water. In addition, we have also successfully shown in this study that the defect concentration in MOF-801 can be rationally tuned by adjusting the modulator concentration (formic acid) in the synthesis solution. The resulting defective MOF-801 can then be used for environmental remediation, which we have shown here by employing them as an adsorbent for diclofenac removal from water streams. The enhanced adsorption of defective MOF-801 in comparison to its non-defective counterpart is due to the pore enlargement of the defective MOF-801 which provides a better pathway to access the adsorption sites. The maximum diclofenac adsorption capacity in a highly defective MOF-801 can reach as high as 680 mg g−1, which is almost 4 times higher than its non-defective counterpart. This study then opens possibilities to engineer the MOF particles for environmental remediation.
Wu T, Prasetya N, Li K, 2022, Re-generable and re-synthesisable micro-structured MIL-53 Rachig Rings for ibuprofen removal, Journal of Environmental Chemical Engineering, Vol: 10, Pages: 107432-107432, ISSN: 2213-3437
Water-stable metal–organic frameworks (MOFs) are attractive adsorbent materials for water purification. However, for practical applications, they must be structured into beads, granules, pellets, etc. which would impair their adsorption performances. This study demonstrates the feasibility in developing a water-stable MIL-53 onto a micro-structured alumina Raschig Ring (Al-RR) served not only as an aluminium metal source, but also as a support. Our results showed that a MIL-53 layer covers the entire surface of the Al-RR. The unique structure of the Al-RR allows easy access of water pollutants, hence achieving high adsorption efficiencies with its estimated equilibrium adsorption capacity between 222 and 300 mg g−1. In addition, the synthesised MIL-53 Raschig Ring (MIL-53-RR) can be regenerated or re-synthesised without any significant reduction in the adsorption performances, indicating the potential for possible commercialisation of the MIL-53-RR for water purifications such as ibuprofen removal from water.
Wang C, Jiang A, Liu X, et al., 2022, Amorphous metal-organic framework UiO-66-NO2 for removal of oxyanion pollutants: Towards improved performance and effective reusability, SEPARATION AND PURIFICATION TECHNOLOGY, Vol: 295, ISSN: 1383-5866
- Author Web Link
- Cite
- Citations: 1
Wu T, Moghadam F, Li K, 2022, High-performance porous graphene oxide hollow fiber membranes with tailored pore sizes for water purification, JOURNAL OF MEMBRANE SCIENCE, Vol: 645, ISSN: 0376-7388
- Author Web Link
- Cite
- Citations: 4
Li T, Rabuni MF, Hartley UW, et al., 2022, Advanced ceramic membrane design for gas separation and energy application, 60 Years of the Loeb-Sourirajan Membrane: Principles, New Materials, Modelling, Characterization, and Applications, Pages: 239-268, ISBN: 9780323886246
Ceramic membranes have shown great potential and versatility in a number of industrial and commercial sectors, aside from an expanding field among research communities. The distinctive feature of superior chemical, mechanical and thermal stability leads to its significance in separation processes, particularly under harsh conditions. In addition, ceramic membranes made from specific materials can theoretically display infinite permselectivity for certain gases, a property that offers great potential for industrial gas separation with improved purity. Such membranes, whose working principles depend on ionic conduction at elevated temperatures, also serve as the core component for membrane reactors or ceramic fuel cells for important energy applications. This chapter includes a general introduction to ceramic membranes, working principles, and the latest membrane design for oxygen permeation membrane (OPM) as well as OPM-based ceramic fuel cells for clean and sustainable energy generation.
Garcia-Vazquez M, Marin P, Ordonez S, et al., 2021, Scaling up a hollow fibre reactor: A study on non-PGM hollow fibre after-treatments for methane emission control under extreme conditions, JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, Vol: 9, ISSN: 2213-2929
- Author Web Link
- Cite
- Citations: 2
Peng H, Shah V, Li K, 2021, Morphology and performance of polyvinylidene fluoride (PVDF) membranes prepared by the CCD method: Thermodynamic considerations, JOURNAL OF MEMBRANE SCIENCE, Vol: 641, ISSN: 0376-7388
The combined crystallisation and diffusion method (CCD) has recently demonstrated its superiority in producing high-performance PVDF membranes over the traditional membrane preparation methods. The CCD method involves a unidirectional cooling step in its membrane preparation. While the role of kinetics behind the CCD method has been thoroughly studied by varying the cooling rate, the cooling temperature itself has never been changed from −30 °C. This study therefore explores the thermodynamic implications of changing the cooling temperature during the CCD process on the morphology and performance of the resultant membranes. Two different molecular weights of PVDF were studied and different batches of membranes were prepared by progressively changing the cooling temperature from −30 °C to 0 °C. The results showed that for both the PVDF types, with an increase in cooling temperature, the separation surface pore sizes and membrane permeances increase but more so for the one prepared using the higher molecular weight PVDF. This showcases the ability to tailor the properties of the CCD membranes by merely changing the cooling temperature. The membranes were then also characterised for their morphology, mechanical strengths and crystallinity to help further understand the role of cooling temperature in affecting these membrane properties.
Shah V, Wang B, Li K, 2021, High-performance PVDF membranes prepared by the combined crystallisation and diffusion (CCD) method using a dual-casting technique: a breakthrough for water treatment applications, ENERGY & ENVIRONMENTAL SCIENCE, Vol: 14, Pages: 5491-5500, ISSN: 1754-5692
- Author Web Link
- Cite
- Citations: 4
Prasetya N, Li K, 2021, MOF-808 and its hollow fibre adsorbents for efficient diclofenac removal, Chemical Engineering Journal, Vol: 417, Pages: 1-11, ISSN: 1385-8947
The popularity of diclofenac, one of the highly effective non-steroidal anti-inflammatory drugs (NSAIDs), has led to its excessive consumptions. Consequently, its presence in water bodies is continually increasing and poses serious threats to ecosystems. Adsorption processes have been employed to address this issue. However, most of the commercially available adsorbents such as activated carbon, zeolite, etc. suffer from relatively low diclofenac adsorption capacity (100-200 mg g-1) and slow kinetics. Herein, we explore the potential of MOF-808 as a superior adsorbent for diclofenac removal. Benefitting from its high specific surface area and large pore aperture, the maximum diclofenac adsorption capacity achieved in this study reaches 833 mg g-1 with almost 95% removal within first hour. This performance is one of the highest reported adsorbents for diclofenac removal so far and has led us to have further commercial exploitation by employing a yttria-stabilised zirconia (YSZ) hollow fibre support where the MOF-808 adsorbent is deposited on its outer surface. Such a configuration is beneficial from a practical point-of-view, as it eliminates the requirement of separation of powdered adsorbents from treated water once the adsorption process finishes. Also, the hollow fibre configuration not only substantially increases the surface-area-to-volume ratio of adsorption systems, but also reduces the maldistribution of flows commonly unavoidable in conventional packed bed adsorption columns. The high-efficiency of the MOF-808 hollow fibre adsorbent is exhibited by retainment of its equilibrium adsorption capacity of 796 mg g-1. More importantly, the MOF-808 hollow fibre adsorbent can withstand at least 4 adsorption-regeneration cycles without any significant reduction in the adsorption performances, indicating the potential for possible commercialisation of the MOF-808 adsorbent for diclofenac removal from water.
Fuzil NS, Othman NH, Alias NH, et al., 2021, A review on photothermal material and its usage in the development of photothermal membrane for sustainable clean water production, DESALINATION, Vol: 517, ISSN: 0011-9164
- Author Web Link
- Cite
- Citations: 34
Khamhangdatepon T, Tongnan V, Hartley M, et al., 2021, Mechanisms of synthesis gas production via thermochemical cycles over La0.3Sr0.7Co0.7Fe0.3O3, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, Vol: 46, Pages: 24666-24675, ISSN: 0360-3199
- Author Web Link
- Cite
- Citations: 2
Shah V, Prasetya N, Li K, 2021, Polydopamine modification of high-performance PVDF ultrafiltration membranes prepared by the combined crystallisation and diffusion (CCD) method, JOURNAL OF MEMBRANE SCIENCE, Vol: 635, ISSN: 0376-7388
- Author Web Link
- Cite
- Citations: 9
Araki S, Yamashita R, Li K, et al., 2021, Preparation and gas permeation properties of all-silica CHA zeolite hollow fiber membranes prepared on amorphous-silica hollow fibers, JOURNAL OF MEMBRANE SCIENCE, Vol: 634, ISSN: 0376-7388
- Author Web Link
- Cite
- Citations: 3
Shah V, Wang B, Li K, 2021, Blending modification to porous polyvinylidene fluoride (PVDF) membranes prepared via combined crystallisation and diffusion (CCD) technique, JOURNAL OF MEMBRANE SCIENCE, Vol: 618, ISSN: 0376-7388
- Author Web Link
- Cite
- Citations: 16
Kazakli M, Mutch GA, Triantafyllou G, et al., 2021, Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates, JOURNAL OF MEMBRANE SCIENCE, Vol: 617, ISSN: 0376-7388
- Author Web Link
- Cite
- Citations: 7
Wu T, Prasetya N, Li K, 2020, Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications, Journal of Membrane Science, Vol: 615, Pages: 1-18, ISSN: 0376-7388
Aluminium-based metal organic frameworks (MOFs) are considered as one of the most promising MOFs which have been widely investigated because of their excellent framework stability. In addition, aluminium is a relatively cheap and abundant metal source compared to others, making it as an attractive metal source for mass production of the MOFs. Because of some promising properties of the aluminium-based MOFs, they have also been fabricated to membranes for advanced molecular separations. This article intends to give a comprehensive review starting from the state-of-the-art of general MOF materials with specific emphasis on aluminium-based MOFs, followed by the membranes and its applications in fluid separation. The most-promising and well-studied aluminium MOFs families from MIL (Materials Institute Lavoisier) and CAU (Christian-Albrechts-University) class are first reviewed. The discussion includes their basic properties and some examples of applications. This is then followed by discussions on the common and novel strategies to turn them into membranes with various pathways. Afterwards, various applications of aluminium-based MOF membranes are discussed. Finally, the outlook both from the MOF and membranes perspectives is also discussed which could aid to direct the future research in this field.
Mahyon NI, Li T, Tantra BD, et al., 2020, Integrating Pd-doped perovskite catalysts with ceramic hollow fibre substrate for efficient CO oxidation, Journal of Environmental Chemical Engineering, Vol: 8, Pages: 1-9, ISSN: 2213-3437
Doping Pd into perovskite catalysts helps to reduce light-off temperatures, improve thermal-chemical stability and lowered catalyst cost by decreasing Platinum Group Metals (PGMs). In this study, LaFe0.7Mn0.225Pd0.075O3 (LFMPO) and LaFe0.7Co0.225Pd0.075O3 (LFCPO) were synthesised, characterized and evaluated for catalytic treatment of automotive emissions, using CO oxidation as the model reaction. Such catalysts were further incorporated inside micro-structured ceramic hollow fibre substrates, and compared with a packed bed configuration by light-off temperatures. Performance evaluations suggest that, LFMPO deposited inside the hollow fibre substrate could be light up at 232 °C, which is 10 °C lower than a packed-bed counterpart with the same amount of catalyst (5 mg) and GHSV of ∼5300 h−1. While excessive incorporation of the catalyst (10 mg) generates significantly higher transfer resistance, which impairs catalytic performance of hollow fibre reactors, with CO conversion per gram of catalyst reduced from 0.01 mol g−1 to 0.0051 mol g−1.
Li T, Lu X, Rabuni MF, et al., 2020, High-performance fuel cell designed for coking-resistance and efficient conversion of waste methane to electrical energy, ENERGY & ENVIRONMENTAL SCIENCE, Vol: 13, Pages: 1879-1887, ISSN: 1754-5692
- Author Web Link
- Cite
- Citations: 7
Rabuni MF, Vatcharasuwan N, Li T, et al., 2020, High performance micro-monolithic reversible solid oxide electrochemical reactor, Journal of Power Sources, Vol: 458, Pages: 1-9, ISSN: 0378-7753
Reversible solid oxide electrochemical reactors should work efficiently in both fuel cell and electrolysis modes in order to be considered a practical technology for the energy field. In addition to improved performance, excellent electrode reversibility and stability for long-term operation are crucial for such reactors. Herein, high-performance 6-channel solid oxide electrochemical reactors for reversible operation has been successfully developed using a phase-inversion and sintering method. A unique morphology has been obtained where micro-channels were formed from multiple directions and the interchangeable thickness of sponge-like region between each channel and the exterior surface. Such micro-structured cells, which is made from commercially-available materials Ni-YSZ|YSZ|YSZ-LSM, exhibit superior performance for hydrogen (H2) fuel cell achieving 1.62 W cm−2 at 800 °C. Similarly, excellent performance for carbon dioxide (CO2) electrolysis has been demonstrated, achieving current densities up to 6.3 (3.1) A cm−2 under 1.8 (1.5) V at 800 °C. To our knowledge, such high performances are one of the highest reported values for both H2-fuel cell and CO2 electrolysis. This outstanding performance, coupled with superior mechanical robustness, promises a long-awaited alternative to the conventional tubular counterpart that would allow miniaturized system to be commercially applied in the near future.
Chi Y, Li T, Chong JY, et al., 2020, Graphene-protected nickel hollow fibre membrane and its application in the production of high-performance catalysts, JOURNAL OF MEMBRANE SCIENCE, Vol: 597, ISSN: 0376-7388
- Author Web Link
- Cite
- Citations: 3
Yunsi C, Chong JY, Wang B, et al., 2020, Pristine graphene membranes supported on ceramic hollow fibre prepared via a sacrificial layer assisted CVD approach, Journal of Membrane Science, Vol: 595, Pages: 1-8, ISSN: 0376-7388
Graphene is a 2D ultra-thin material, when being used as membranes, potentially promises high permeation flux and can be operated in extreme conditions attributed to its chemical inertness. Currently, continuous atomic thin graphene membranes can only be made by chemical vapour deposition (CVD) on flat sheet, which limits its process intensification because of the low surface-area-to-volume ratio. To tackle this challenge, we have successfully devised an unprecedented method to fabricate graphene membranes supported on ceramic hollow fibre via a nickel sacrificial layer approach. It starts with coating a continuous dense nickel sacrificial layer on yttrium-stabilised zirconia (YSZ) hollow fibre via electroless plating, followed by synthesis of a continuous graphene layer by CVD. After that, thermal oxygen etching followed by nitric acid leaching were performed to successfully remove the nickel layer, and defect-patching treatment was carried out to eliminate any major defects formed during the leaching process. Herein, a continuous ultra-thin graphene layer sitting on YSZ hollow fibre was obtained. The achieved graphene hollow fibre membrane exhibits a methanol flux of 2.4 LMH (L m−2 h−1) bar−1 and a remarkable 98.8% rose bengal rejection. This study thus demonstrates a step towards successful engineering of pristine graphene membranes on micro-tubular supports.
Chong JY, Wang B, Sherrell PC, et al., 2019, Fabrication of graphene‐covered micro‐tubes for process intensification, Advanced Engineering Materials, Vol: 21, Pages: 1-6, ISSN: 1438-1656
Graphene is known for its high surface‐area‐to‐mass ratio. However, for graphene to be used in engineering processes such as catalytic reactors or heat exchangers, high surface‐area‐to‐volume ratio is essential. Currently, graphene is only prepared in sheet form, which limits its surface‐area‐to‐volume ratio to around 200 m2 m−3. In this study, we propose and demonstrate a technique based on chemical vapour deposition (CVD) to realise graphene on a copper‐based micro‐tubular substrate to not only substantially increase its surface‐area‐to‐volume ratio to a value over 2000 m2 m−3, but also to eliminate maldistribution of flows commonly unavoidable in flat‐sheet configurations. Our approach uses a dual‐layer micro‐tubular substrate fabricated by a phase‐inversion facilitated co‐extrusion technique. In the substrate, a thin copper outer layer is employed to enable the CVD growth of graphene, and an inner Cu‐Fe layer is adopted to provide a strong mechanical support. Our study shows that this approach is feasible to produce graphene with a very high surface‐area‐to‐volume ratio for possible practical applications in catalytic reactors or heat exchangers, though problems such as the inter‐diffusion between the two metal layers and defects in graphene need to be further addressed. To the best of our knowledge, this study is the first attempt to prepare graphene with high surface‐area‐to‐volume ratio by a CVD route.
Li T, Khamhangdatepon T, Wang B, et al., 2019, New bio-inspired design for high-performance and highly robust La0.6Sr0.4Co0.2Fe0.8O3-δ membranes for oxygen permeation, Journal of Membrane Science, Vol: 578, Pages: 203-208, ISSN: 0376-7388
Ceramic-based oxygen permeation membranes (OPM) are considered to be promising for the separation of oxygen from air. However, state-of-art membrane designs are unable to deliver satisfactory performances in terms of permeation flux, mechanical/chemical stability and membrane surface area. In this study, a new bio-inspired design has been successfully introduced in the micro-monolithic membranes made of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) for oxygen separation. By carefully controlling the process parameters of the fabrication and utilizing the hydraulic pressure of internal coagulant, the geometry of channels in the micro-monolith has been converted from a circular shape to a triangle shape with rounded corners. This new bio-inspired, ‘orange-like’ architecture not only reduces the effective oxygen diffusional length down to approximately 50 µm, but also significantly increases the ratio of active region among the overall circumference up to 90%. This new bio-inspired micro-monolithic design displays an excellent oxygen permeation flux of 1.87 ml min-1cm-2 at 950 °C, which is superior to the most reported values from LSCF material systems. In addition, such a design illustrates an excellent mechanical robustness that has long been a bottleneck for LSCF membranes. This work demonstrates a promising solution to tackle the long-existing trade-off between oxygen permeation performance and mechanical reliability.
Li T, Heenan TMM, Rabuni MF, et al., 2019, Design of next-generation ceramic fuel cells and real-time characterization with synchrotron X-ray diffraction computed tomography, Nature Communications, Vol: 10, Pages: 1-11, ISSN: 2041-1723
Ceramic fuel cells offer a clean and efficient means of producing electricity through a variety of fuels. However, miniaturization of cell dimensions for portable device application remains a challenge, as volumetric power densities generated by readily-available planar/tubular ceramic cells are limited. Here, we demonstrate a concept of ‘micro-monolithic’ ceramic cell design. The mechanical robustness and structural integrity of this design is thoroughly investigated with real-time, synchrotron X-ray diffraction computed tomography, suggesting excellent thermal cycling stability. The successful miniaturization results in an exceptional power density of 1.27 W cm−2 at 800 °C, which is among the highest reported. This holistic design incorporates both mechanical integrity and electrochemical performance, leading to mechanical property enhancement and representing an important step toward commercial development of portable ceramic devices with high volumetric power (>10 W cm−3), fast thermal cycling and marked mechanical reliability.
Mahyon NI, Li T, Martinez-Botas R, et al., 2019, A new hollow fibre catalytic converter design for sustainable automotive emissions control, CATALYSIS COMMUNICATIONS, Vol: 120, Pages: 86-90, ISSN: 1566-7367
Kang H, Wang B, Guo S, et al., 2018, Micropatterned ultrathin MOF membranes with enhanced molecular sieving property, Angewandte Chemie International Edition, Vol: 57, Pages: 13892-13896, ISSN: 1433-7851
Metal–organic frameworks (MOFs) are attractive crystalline materials for membranes due to their diverse crystalline pore structures and molecular separation properties. However, the fabrication cost is relatively high compared to conventional polymeric membranes. The concern of the cost could be eased if they are part of a value‐added device, for example, as the key separation unit in a lab‐on‐a‐chip device. This study demonstrates the feasibility of miniaturization of MOF membranes by patterning the membrane surface, a necessary step for MOF membranes to be used in compact devices. Water‐stable ultrathin UiO‐66 membranes with a thickness down to 250 nm on a substrate with a complex pattern were grown. The patterned membranes showed a 100 % improvement in the apparent permeation flux over conventional flat‐UiO‐66 membranes without compromising the molecular separation property, indicating the complexity of a surface would not be a formidable obstacle to the MOF membrane fabrication.
Hartley UW, Tongnan V, Laosiripojana N, et al., 2018, Nitrous oxide decomposition over La(0.3)Sr(0.7)Co(0.7)fe(0.3)O(3-delta) catalyst, REACTION KINETICS MECHANISMS AND CATALYSIS, Vol: 125, Pages: 85-97, ISSN: 1878-5190
- Author Web Link
- Cite
- Citations: 3
Huang K, Wang B, Chi Y, et al., 2018, High propylene selective metal-organic framework membranes prepared in confined spaces via convective circulation synthesis, Advanced Materials Interfaces, Vol: 5, Pages: 1-8, ISSN: 2196-7350
In this study, the successful preparation of defect‐free metal‐organic framework (MOF) membranes on the inner surface of ceramic hollow fibers and micromonoliths is reported for the first time. The prepared zeolitic imidazolite framework‐8 membranes exhibit impressively high propylene/propane (C3H6/C3H8) separation factor (up to 139), which is over an order of magnitude higher than that of traditional polymeric membranes. Such excellent results are achieved via a versatile convective circulation method, which eliminates the need of pumps for materials supply and is cost effective andenergy efficient. The MOF membranes prepared in this study show the potential in meeting stringent industrial requirements, as they have full protection from external impact during storage and module assembly, as well as high membrane surface area per volume, enabling compact devices for process intensification.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.