Imperial College London

DrKeithFraser

Faculty of MedicineSchool of Public Health

Research Associate
 
 
 
//

Contact

 

keith.fraser Website

 
 
//

Location

 

School of Public HealthWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

25 results found

Gaythorpe K, Fitzjohn R, Hinsley W, Imai N, Knock E, Perez Guzman P, Djaafara B, Fraser K, Baguelin M, Ferguson Net al., 2023, Data pipelines in a public health emergency: the human in the machine, Epidemics: the journal of infectious disease dynamics, Vol: 43, ISSN: 1755-4365

In an emergency epidemic response, data providers supply data on a best-faith effort to modellers and analysts who are typically the end user of data collected for other primary purposes such as to inform patient care. Thus, modellers who analyse secondary data have limited ability to influence what is captured. During an emergency response, models themselves are often under constant development and require both stability in their data inputs and flexibility to incorporate new inputs as novel data sources become available. This dynamic landscape is challenging to work with. Here we outline a data pipeline used in the ongoing COVID-19 response in the UK that aims to address these issues.A data pipeline is a sequence of steps to carry the raw data through to a processed and useable model input, along with the appropriate metadata and context. In ours, each data type had an individual processing report, designed to produce outputs that could be easily combined and used downstream. Automated checks were in-built and added as new pathologies emerged. These cleaned outputs were collated at different geographic levels to provide standardised datasets. Finally, a human validation step was an essential component of the analysis pathway and permitted more nuanced issues to be captured. This framework allowed the pipeline to grow in complexity and volume and facilitated the diverse range of modelling approaches employed by researchers. Additionally, every report or modelling output could be traced back to the specific data version that informed it ensuring reproducibility of results.Our approach has been used to facilitate fast-paced analysis and has evolved over time. Our framework and its aspirations are applicable to many settings beyond COVID-19 data, for example for other outbreaks such as Ebola, or where routine and regular analyses are required.

Journal article

Chanda J, Wagman J, Chanda B, Kaniki T, Ng'andu M, Muyabe R, Mwenya M, Sakala J, Miller J, Mwaanga G, Simubali L, Mburu MM, Simulundu E, Mungo A, Fraser K, Mwandigha L, Ashton R, Yukich J, Harris AF, Burkot TR, Orange E, Littrell M, Entwistle Jet al., 2023, Feeding rates of malaria vectors from a prototype attractive sugar bait station in Western Province, Zambia: results of an entomological validation study, Malaria Journal, Vol: 22, ISSN: 1475-2875

BackgroundAttractive targeted sugar bait (ATSB) stations are a promising new approach to malaria vector control that could compliment current tools by exploiting the natural sugar feeding behaviors of mosquitoes. Recent proof of concept work with a prototype ATSB® Sarabi Bait Station (Westham Co., Hod-Hasharon, Israel) has demonstrated high feeding rates and significant reductions in vector density, human biting rate, and overall entomological inoculation rate for Anopheles gambiae sensu lato (s.l.) in the tropical savannah of western Mali. The study reported here was conducted in the more temperate, rainier region of Western Province, Zambia and was designed to confirm the primary vector species in region and to estimate corresponding rates of feeding from prototype attractive sugar bait (ASB) Sarabi Bait Stations.MethodsThe product evaluated was the Sarabi v1.1.1 ASB station, which did not include insecticide but did include 0.8% uranine as a dye allowing for the detection, using UV fluorescence light microscopy, of mosquitoes that have acquired a sugar meal from the ASB. A two-phase, crossover study design was conducted in 10 village-based clusters in Western Province, Zambia. One study arm initially received 2 ASB stations per eligible structure while the other initially received 3. Primary mosquito sampling occurred via indoor and outdoor CDC Miniature UV Light Trap collection from March 01 through April 09, 2021 (Phase 1) and from April 19 to May 28, 2021 (Phase 2).ResultsThe dominant vector in the study area is Anopheles funestus s.l., which was the most abundant species group collected (31% of all Anophelines; 45,038/144,5550), had the highest sporozoite rate (3.16%; 66 positives out of 2,090 tested), and accounted for 94.3% (66/70) of all sporozoite positive specimens. Of those An. funestus specimens further identified to species, 97.2% (2,090/2,150) were An. funestus sensu stricto (s.s.). Anopheles gambiae s.l. (96.8% of which were Anopheles arabiensis

Journal article

Imai N, Rawson T, Knock E, Sonabend R, Elmaci Y, Perez-Guzman P, Whittles L, Thekke Kanapram D, Gaythorpe K, Hinsley W, Djaafara B, Wang H, Fraser K, Fitzjohn R, Hogan A, Doohan P, Ghani A, Ferguson N, Baguelin M, Cori Aet al., 2023, Quantifying the impact of delaying the second COVID-19 vaccine dose in England: a mathematical modelling study, The Lancet Public Health, Vol: 8, Pages: e174-e183, ISSN: 2468-2667

Background: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3-weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the Alpha variant prompted the UK to extend the interval between doses to 12-weeks. In this study, we aim to quantify the impact of delaying the second vaccine dose on the epidemic in England.Methods: We used a previously described model of SARS-CoV-2 transmission, calibrated to English COVID-19 surveillance data including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework. We modelled and compared the epidemic trajectory assuming that vaccine doses were administered 3-weeks apart against the real reported vaccine roll-out schedule. We estimated and compared the resulting number of daily infections, hospital admissions, and deaths. Scenarios spanning a range of vaccine effectiveness and waning assumptions were investigated.Findings: We estimate that delaying the interval between the first and second COVID-19 vaccine doses from 3- to 12-weeks prevented an average 58,000 COVID-19 hospital admissions and 10,100 deaths between 8th December 2020 and 13th September 2021. Similarly, we estimate that the 3-week strategy would have resulted in more infections and deaths compared to the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. Interpretation: England’s delayed second dose vaccination strategy was informed by early real-world vaccine effectiveness data and a careful assessment of the trade-offs in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths. Ther

Journal article

Mwandigha LM, Fraser KJ, Racine A, Mouksassi S, Ghani ACet al., 2022, Power calculations for cluster randomised trials (CRTs) with truncated Poisson-distributed outcomes: a motivating example from a malaria vector control trial, International Journal of Epidemiology, Vol: 49, Pages: 954-962, ISSN: 0300-5771

Background:Cluster randomized trials (CRTs) are increasingly used to study the efficacy of interventions targeted at the population level. Formulae exist to calculate sample sizes for CRTs, but they assume that the domain of the outcomes being considered covers the full range of values of the considered distribution. This assumption is frequently incorrect in epidemiological trials in which counts of infection episodes are right-truncated due to practical constraints on the number of times a person can be tested.Methods:Motivated by a malaria vector control trial with right-truncated Poisson-distributed outcomes, we investigated the effect of right-truncation on power using Monte Carlo simulations.Results:The results demonstrate that the adverse impact of right-truncation is directly proportional to the magnitude of the event rate, λ, with calculations of power being overestimated in instances where right-truncation was not accounted for. The severity of the adverse impact of right-truncation on power was more pronounced when the number of clusters was ≤30 but decreased the further the right-truncation point was from zero.Conclusions:Potential right-truncation should always be accounted for in the calculation of sample size requirements at the study design stage.

Journal article

Polonsky JA, Bhatia S, Fraser K, Hamlet A, Skarp J, Stopard IJ, Hugonnet S, Kaiser L, Lengeler C, Blanchet K, Spiegel Pet al., 2022, Feasibility, acceptability, and effectiveness of non-pharmaceutical interventions against infectious diseases among crisis-affected populations: a scoping review, Infectious Diseases of Poverty, Vol: 11, Pages: 1-19, ISSN: 2049-9957

BackgroundNon-pharmaceutical interventions (NPIs) are a crucial suite of measures to prevent and control infectious disease outbreaks. Despite being particularly important for crisis-affected populations and those living in informal settlements, who typically reside in overcrowded and resource limited settings with inadequate access to healthcare, guidance on NPI implementation rarely takes the specific needs of such populations into account. We therefore conducted a systematic scoping review of the published evidence to describe the landscape of research and identify evidence gaps concerning the acceptability, feasibility, and effectiveness of NPIs among crisis-affected populations and informal settlements.MethodsWe systematically reviewed peer-reviewed articles published between 1970 and 2020 to collate available evidence on the feasibility, acceptability, and effectiveness of NPIs in crisis-affected populations and informal settlements. We performed quality assessments of each study using a standardised questionnaire. We analysed the data to produce descriptive summaries according to a number of categories: date of publication; geographical region of intervention; typology of crisis, shelter, modes of transmission, NPI, research design; study design; and study quality.ResultsOur review included 158 studies published in 85 peer-reviewed articles. Most research used low quality study designs. The acceptability, feasibility, and effectiveness of NPIs was highly context dependent. In general, simple and cost-effective interventions such as community-level environmental cleaning and provision of water, sanitation and hygiene services, and distribution of items for personal protection such as insecticide-treated nets, were both highly feasible and acceptable. Logistical, financial, and human resource constraints affected both the implementation and sustainability of measures. Community engagement emerged as a strong factor contributing to the effectiveness of NPIs. Con

Journal article

Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, Gaythorpe KAM, Imai N, Hinsley W, Okell LC, Rosello A, Kantas N, Walters CE, Bhatia S, Watson OJ, Whittaker C, Cattarino L, Boonyasiri A, Djaafara BA, Fraser K, Fu H, Wang H, Xi X, Donnelly CA, Jauneikaite E, Laydon DJ, White PJ, Ghani AC, Ferguson NM, Cori A, Baguelin Met al., 2021, Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England, Science Translational Medicine, Vol: 13, Pages: 1-12, ISSN: 1946-6234

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modelling framework allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rteff ) below 1 consistently; if introduced one week earlier it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 (95% credible interval [95%CrI]: 15,900-38,400). The infection fatality ratio decreased from 1.00% (95%CrI: 0.85%-1.21%) to 0.79% (95%CrI: 0.63%-0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95%CrI: 14.7%-35.2%) than those residing in the community (7.9%, 95%CrI: 5.9%-10.3%). On 2nd December 2020 England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95%CrI: 5.4%-10.2%) and 22.3% (95%CrI: 19.4%-25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow non-pharmaceutical interventions to be lifted without a resurgence of transmission.

Journal article

Fraser KJ, Mwandigha L, Traore SF, Traore MM, Doumbia S, Junnila A, Revay E, Beier JC, Marshall JM, Ghani AC, Muller Get al., 2021, Estimating the potential impact of Attractive Targeted Sugar Baits (ATSBs) as a new vector control tool for Plasmodium falciparum malaria, Malaria Journal, Vol: 20, ISSN: 1475-2875

BackgroundAttractive targeted sugar baits (ATSBs) are a promising new tool for malaria control as they can target outdoor-feeding mosquito populations, in contrast to current vector control tools which predominantly target indoor-feeding mosquitoes.MethodsIt was sought to estimate the potential impact of these new tools on Plasmodium falciparum malaria prevalence in African settings by combining data from a recent entomological field trial of ATSBs undertaken in Mali with mathematical models of malaria transmission. The key parameter determining impact on the mosquito population is the excess mortality due to ATSBs, which is estimated from the observed reduction in mosquito catch numbers. A mathematical model capturing the life cycle of P. falciparum malaria in mosquitoes and humans and incorporating the excess mortality was used to estimate the potential epidemiological effect of ATSBs.ResultsThe entomological study showed a significant reduction of ~ 57% (95% CI 33–72%) in mosquito catch numbers, and a larger reduction of ~ 89% (95% CI 75–100%) in the entomological inoculation rate due to the fact that, in the presence of ATSBs, most mosquitoes do not live long enough to transmit malaria. The excess mortality due to ATSBs was estimated to be lower (mean 0.09 per mosquito per day, seasonal range 0.07–0.11 per day) than the bait feeding rate obtained from one-day staining tests (mean 0.34 per mosquito per day, seasonal range 0.28–0.38 per day).ConclusionsFrom epidemiological modelling, it was predicted that ATSBs could result in large reductions (> 30% annually) in prevalence and clinical incidence of malaria, even in regions with an existing high malaria burden. These results suggest that this new tool could provide a promising addition to existing vector control tools and result in significant reductions in malaria burden across a range of malaria-endemic settings.

Journal article

Fu H, Wang H, Xi X, Boonyasiri A, Wang Y, Hinsley W, Fraser KJ, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewé T, Dighe A, Winskill P, van Elsland SL, Ainslie KEC, Baguelin M, Bhatt S, Boyd O, Brazeau NF, Cattarino L, Charles G, Coupland H, Cucunubá ZM, Cuomo-Dannenburg G, Donnelly CA, Dorigatti I, Eales OD, Fitzjohn RG, Flaxman S, Gaythorpe KAM, Ghani AC, Green WD, Hamlet A, Hauck K, Haw DJ, Jeffrey B, Laydon DJ, Lees JA, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag KV, Ragonnet-Cronin M, Riley S, Schmit N, Thompson HA, Unwin HJT, Verity R, Vollmer MAC, Volz E, Walker PGT, Walters CE, Waston OJ, Whittaker C, Whittles LK, Imai N, Bhatia S, Ferguson NMet al., 2021, A database for the epidemic trends and control measures during the first wave of COVID-19 in mainland China, International Journal of Infectious Diseases, Vol: 102, Pages: 463-471, ISSN: 1201-9712

Objectives: This data collation effort aims to provide a comprehensive database to describe the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19)across main provinces in China. Methods: From mid-January to March 2020, we extracted publicly available data on the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted a descriptive analysis of the epidemics in the six most-affected provinces. Results: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends were different across provinces. Compared to Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as local transmission of COVID-19 declined, switching the focus of measures to testing and quarantine of inbound travellers could help to sustain the control of the epidemic. Conclusions: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database with these indicators and information on control measures provides useful source for exploring further research and policy planning for response to the COVID-19 epidemic.

Journal article

Knock E, Whittles L, Lees J, Perez Guzman P, Verity R, Fitzjohn R, Gaythorpe K, Imai N, Hinsley W, Okell L, Rosello A, Kantas N, Walters C, Bhatia S, Watson O, Whittaker C, Cattarino L, Boonyasiri A, Djaafara A, Fraser K, Fu H, Wang H, Xi X, Donnelly C, Jauneikaite E, Laydon D, White P, Ghani A, Ferguson N, Cori A, Baguelin Met al., 2020, Report 41: The 2020 SARS-CoV-2 epidemic in England: key epidemiological drivers and impact of interventions

England has been severely affected by COVID-19. We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional 2020 surveillance data. Only national lockdown brought the reproduction number below 1 consistently; introduced one week earlier in the first wave it could have reduced mortality by 23,300 deaths on average. The mean infection fatality ratio was initially ~1.3% across all regions except London and halved following clinical care improvements. The infection fatality ratio was two-fold lower throughout in London, even when adjusting for demographics. The infection fatality ratio in care homes was 2.5-times that in the elderly in the community. Population-level infection-induced immunity in England is still far from herd immunity, with regional mean cumulative attack rates ranging between 4.4% and 15.8%.

Report

Grassly NC, Pons-Salort M, Parker EPK, White PJ, Ferguson NM, Imperial College COVID-19 Response Teamet al., 2020, Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study, Lancet Infectious Diseases, Vol: 20, Pages: 1381-1389, ISSN: 1473-3099

BACKGROUND: WHO has called for increased testing in response to the COVID-19 pandemic, but countries have taken different approaches and the effectiveness of alternative strategies is unknown. We aimed to investigate the potential impact of different testing and isolation strategies on transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We developed a mathematical model of SARS-CoV-2 transmission based on infectiousness and PCR test sensitivity over time since infection. We estimated the reduction in the effective reproduction number (R) achieved by testing and isolating symptomatic individuals, regular screening of high-risk groups irrespective of symptoms, and quarantine of contacts of laboratory-confirmed cases identified through test-and-trace protocols. The expected effectiveness of different testing strategies was defined as the percentage reduction in R. We reviewed data on the performance of antibody tests reported by the Foundation for Innovative New Diagnostics and examined their implications for the use of so-called immunity passports. FINDINGS: If all individuals with symptoms compatible with COVID-19 self-isolated and self-isolation was 100% effective in reducing onwards transmission, self-isolation of symptomatic individuals would result in a reduction in R of 47% (95% uncertainty interval [UI] 32-55). PCR testing to identify SARS-CoV-2 infection soon after symptom onset could reduce the number of individuals needing to self-isolate, but would also reduce the effectiveness of self-isolation (around 10% would be false negatives). Weekly screening of health-care workers and other high-risk groups irrespective of symptoms by use of PCR testing is estimated to reduce their contribution to SARS-CoV-2 transmission by 23% (95% UI 16-40), on top of reductions achieved by self-isolation following symptoms, assuming results are available at 24 h. The effectiveness of test and trace depends strongly on coverage and the timelines

Journal article

Fraser KJ, Mwandigha L, Traore S, Traore M, Doumbia S, Junnila A, Revay E, Beier J, Marshall J, Ghani A, Muller Get al., 2020, Estimating the potential impact of Attractive Targeted Sugar Baits (ATSBs) as a new vector control tool for Plasmodium falciparum malaria

<jats:title>Abstract</jats:title> <jats:p><jats:bold>Background:</jats:bold> Attractive targeted sugar baits (ATSBs) are a promising new tool for malaria control as they can target outdoor-feeding mosquito populations, in contrast to current vector control tools which predominantly target indoor-feeding mosquitoes. <jats:bold>Methods: </jats:bold>We sought to estimate the potential impact of these new tools on <jats:italic>Plasmodium falciparum</jats:italic> malaria prevalence in African settings by combining data from a recent entomological field trial of ATSBs undertaken in Mali with mathematical models of malaria transmission. <jats:bold>Results:</jats:bold> The entomological study showed a significant reduction of 55.4% (95 % CI 33.7-77.1%) in mosquito catch numbers, and a larger reduction of ~91% (95% CI 75-100%) in the entomological inoculation rate due to the fact that, in the presence of ATSBs, most mosquitoes do not live long enough to transmit malaria. The key parameter determining impact on the mosquito population is the excess mortality due to ATSBs, which we estimate from the observed reduction in mosquito catch numbers to be lower (mean 0.13 per mosquito per day, seasonal range 0.10-0.16 per day) than the bait feeding rate obtained from one-day staining tests (mean 0.34 per mosquito per day, seasonal range 0.28-0.38 per day). Using a mathematical model capturing the lifecycle of <jats:italic>P. falciparum</jats:italic> malaria in mosquitoes and humans and incorporating the excess mortality, we predict that ATSBs could result in large reductions (&gt;30% annually) in prevalence and clinical incidence of malaria, even in regions with an existing high malaria burden. <jats:bold>Conclusions: </jats:bold>Results suggest that this new tool could provide a promising addition to existing vector control tools and result in significant reductions in malaria burde

Working paper

Fu H, Xi X, Wang H, Boonyasiri A, Wang Y, Hinsley W, Fraser K, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewe T, Dighe A, Winskill P, van Elsland S, Ainslie K, Baguelin M, Bhatt S, Boyd O, Brazeau N, Cattarino L, Charles G, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Green W, Hamlet A, Hauck K, Haw D, Jeffrey B, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Schmit N, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Watson O, Whittaker C, Whittles L, Imai N, Bhatia S, Ferguson Net al., 2020, Report 30: The COVID-19 epidemic trends and control measures in mainland China

Report

Dighe A, Cattarino L, Cuomo-Dannenburg G, Skarp J, Imai N, Bhatia S, Gaythorpe K, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Charles G, Cooper L, Coupland H, Cucunuba Perez Z, Djaafara A, Dorigatti I, Eales O, Eaton J, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Flaxman S, Fraser K, Geidelberg L, Green W, Hallett T, Hamlet A, Hauck K, Haw D, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Pons Salort M, Ragonnet-Cronin M, Thompson H, Unwin H, Verity R, Whittaker C, Whittles L, Xi X, Ghani A, Donnelly C, Ferguson N, Riley Set al., 2020, Report 25: Response to COVID-19 in South Korea and implications for lifting stringent interventions, 25

While South Korea experienced a sharp growth in COVID-19 cases early in the global pandemic, it has since rapidly reduced rates of infection and now maintains low numbers of daily new cases. Despite using less stringent “lockdown” measures than other affected countries, strong social distancing measures have been advised in high incidence areas and a 38% national decrease in movement occurred voluntarily between February 24th - March 1st. Suspected and confirmed cases were isolated quickly even during the rapid expansion of the epidemic and identification of the Shincheonji cluster. South Korea swiftly scaled up testing capacity and was able to maintain case-based interventions throughout. However, individual case-based contact tracing, not associated with a specific cluster, was a relatively minor aspect of their control program, with cluster investigations accounting for a far higher proportion of cases: the underlying epidemic was driven by a series of linked clusters, with 48% of all cases in the Shincheonji cluster and 20% in other clusters. Case-based contacts currently account for only 11% of total cases. The high volume of testing and low number of deaths suggests that South Korea experienced a small epidemic of infections relative to other countries. Therefore, caution is needed in attempting to duplicate the South Korean response in settings with larger more generalized epidemics. Finding, testing and isolating cases that are linked to clusters may be more difficult in such settings.

Report

Mellan T, Hoeltgebaum H, Mishra S, Whittaker C, Schnekenberg R, Gandy A, Unwin H, Vollmer M, Coupland H, Hawryluk I, Rodrigues Faria N, Vesga J, Zhu H, Hutchinson M, Ratmann O, Monod M, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Fraser K, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Okell L, Dorigatti I, Walker P, Ghani A, Riley S, Ferguson N, Donnelly C, Flaxman S, Bhatt Set al., 2020, Report 21: Estimating COVID-19 cases and reproduction number in Brazil

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemicusing three epidemiological measures: the number of infections, the number of deaths and the reproduction number. Our modelling framework requires sufficient death data to estimate trends, and wetherefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. Thedistribution of deaths among states is highly heterogeneous, with 5 states—São Paulo, Rio de Janeiro,Ceará, Pernambuco and Amazonas—accounting for 81% of deaths reported to date. In these states, weestimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95%CI: 2.8%-3.7%) in São Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (ameasure of transmission intensity) at the start of the epidemic meant that an infected individual wouldinfect three or four others on average. Following non-pharmaceutical interventions such as school closures and decreases in population mobility, we show that the reproduction number has dropped substantially in each state. However, for all 16 states we study, we estimate with high confidence that thereproduction number remains above 1. A reproduction number above 1 means that the epidemic isnot yet controlled and will continue to grow. These trends are in stark contrast to other major COVID19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproductionnumber below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our resultssuggest that further action is needed to limit spread and prevent health system overload.

Report

Vollmer M, Mishra S, Unwin H, Gandy A, Melan T, Bradley V, Zhu H, Coupland H, Hawryluk I, Hutchinson M, Ratmann O, Monod M, Walker P, Whittaker C, Cattarino L, Ciavarella C, Cilloni L, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Ghani A, Riley S, Okell L, Donnelly C, Ferguson N, Dorigatti I, Flaxman S, Bhatt Set al., 2020, Report 20: A sub-national analysis of the rate of transmission of Covid-19 in Italy

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28; 238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a

Report

Fraser KJ, Mwandigha L, Ghani A, 2019, AN INTEGRATED SOFTWARE PACKAGE FOR MODELLING CLINICAL TRIALS OF VECTOR CONTROL INTERVENTIONS FOR <i>PLASMODIUM FALCIPARUM</i> MALARIA REDUCTION, 68th Annual Meeting of the American-Society-for-Tropical-Medicine-and-Hygiene (ASTMH)

Poster

Paternò GM, Robbiano V, Fraser KJ, Frost C, García Sakai V, Cacialli Fet al., 2017, Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: the Importance of Crystallinity for Organic Avionics, Scientific Reports, Vol: 7, Pages: 41013-41013, ISSN: 2045-2322

Aviation and space applications can benefit significantly from lightweight organic electronics, now spanning from displays to logics, because of the vital importance of minimising payload (size and mass). It is thus crucial to assess the damage caused to such materials by cosmic rays and neutrons, which pose a variety of hazards through atomic displacements following neutron-nucleus collisions. Here we report the first study of the neutron radiation tolerance of two poly(thiophene)s-based organic semiconductors: poly(3-hexylthiophene-2,5-diyl), P3HT, and the liquid-crystalline poly(2,5-bis (3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT. We combine spectroscopic investigations with characterisation of intrinsic charge mobility to show that PBTTT exhibits significantly higher tolerance than P3HT. We explain this in terms of a superior chemical, structural and conformational stability of PBTTT, which can be ascribed to its higher crystallinity, in turn induced by a combination of molecular design features. Our approach can be used to develop design strategies for better neutron radiation-tolerant materials, thus paving the way for organic semiconductors to enter avionics and space applications.

Journal article

Fraser K, Blanc-Pelissier D, Dubois S, Veirman J, Lemiti Met al., 2015, Kinetics of light-induced degradation in compensated boron-doped silicon investigated using photoluminescence and numerical simulation, MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, Vol: 33, Pages: 49-57, ISSN: 1369-8001

Journal article

Poulain G, Blanc D, Focsa A, De Vita M, Fraser K, Sayad Y, Lemiti Met al., 2013, Characterization of laser-induced damage in silicon solar cells during selective ablation processes, MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, Vol: 178, Pages: 682-685, ISSN: 0921-5107

Journal article

Fraser K, Blanc-Pelissier D, Dubois S, Veirman J, Tanay F, Lemiti Met al., 2013, A new model for light-induced degradation by B-O defects in p-and n-type silicon, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2013), Vol: 38, Pages: 542-550, ISSN: 1876-6102

Journal article

Fraser KJ, Boland JJ, 2012, Modelling of Atomic Imaging and Evaporation in the Field Ion Microscope, JOURNAL OF SENSORS, Vol: 2012, ISSN: 1687-725X

Journal article

Fraser KJ, Falster RJ, Wilshaw PR, 2009, Cathodoluminescence assessment of annealed silicon and a novel technique for estimating minority carrier lifetime in silicon, MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, Vol: 159-60, Pages: 194-197, ISSN: 0921-5107

Journal article

Fraser KJ, 2009, Impurity Gettering in Si Examined Using Cathodoluminescence

Past work has shown that the luminescence efficiency of electronic grade silicon can be improved by gettering induced when samples containing ion implantation damage are annealed at ≥900C. This thesis presents an experimental and theoretical investigation of the gettering of metallic impurities in silicon using low-temperature (≤500C) annealing. At these low temperatures, the solubility of metallic impurities is low and consequently it was possible to perform the annealing in metallurgical furnaces rather than in expensive clean room conditions. An annealing scheme was designed consisting of three steps: 20-24 hours at 450 or 500C, a slow cool to 200C, then ~5 days at 200C. The different steps were intended to getter transition metal impurities with different values of solubility and diffusivity. A numerical model was created to simulate charge carrier generation, diffusion and recombination in cathodoluminescence (CL) experiments, in which luminescence occurs by recombination of electrons and holes produced by an incident electron beam. This model was used to calculate the effect on CL efficiency of changes in experimental conditions and sample properties. Modelling results indicate that in electronic grade silicon, gettering only affects the CL efficiency at shallow doping concentrations below ~10^17cm-3, and can only increase CL efficiency to a limited extent due to the effects of high excitation. Surface recombination is predicted to have a very strong effect on CL efficiency. CL experiments on as-grown and samples passivated by a thermal oxide showed strong agreement with the numerical model. Experimental procedures were refined to maximize reproducibility and reduce error. In particular, HF etching was used to standardize surface states between samples given different processing. Reference samples were used to standardize results from separate experiments. CL results obtained from samples subjected to the full low-temperature annealing scheme showed sign

Thesis dissertation

Fraser K, Stowe D, GallowaY S, Senkader S, Falster R, Wilshaw Pet al., 2007, The role of dislocations in producing efficient near-bandgap luminescence from silicon, PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4, NO 8, Vol: 4, Pages: 2977-+, ISSN: 1862-6351

Journal article

Stowe DJ, Fraser KJ, Galloway SA, Senkader S, Falster RJ, Wilshaw PRet al., Efficient, room-temperature, near-band gap luminescence by gettering in ion implanted silicon, Springer Proceedings in Physics, Publisher: Springer Berlin Heidelberg, Pages: 355-358, ISBN: 9783540319146

Book chapter

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00970360&limit=30&person=true