Imperial College London

DrKeittisakSuwan

Faculty of MedicineDepartment of Brain Sciences

Research Associate
 
 
 
//

Contact

 

keittisak.suwan

 
 
//

Location

 

E404Burlington DanesHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

27 results found

Chongchai A, Waramit S, Suwan K, Al-Bahrani M, Udomruk S, Phitak T, Kongtawelert P, Pothacharoen P, Hajitou Aet al., 2021, Bacteriophage‐mediated therapy of chondrosarcoma by selective delivery of the tumor necrosis factor alpha (TNFα) gene, The FASEB Journal, Vol: 35, ISSN: 0892-6638

Chondrosarcoma is a cartilage‐forming bone tumor, well known for intrinsic resistance to chemotherapy and radiotherapy. We have designed a targeted chondrosarcoma gene therapy using a bacteriophage (phage) particle to deliver therapeutic genes. Phage has no tropism for mammalian cells, allowing engineered phage to be targeted to specific cell surface receptors in cancer. We modified the phage capsid to display the RGD4C ligand on the pIII minor coat proteins to specifically bind to αvβ3 or αvβ5 integrin receptors. The endosomal escape peptide, H5WYG, was also displayed on recombinant pVIII major coat proteins to enhance gene delivery. Finally, a human tumor necrosis factor alpha (TNFα) therapeutic transgene expression cassette was incorporated into the phage genome. First, we found that human chondrosarcoma cells (SW1353) have high expression of αvβ3, αvβ5 integrin receptors, and both TNFα receptors. Targeted particle encoding a luciferase reporter gene efficiently and selectively mediated gene delivery to these cells. When SW1353 cells were treated with the targeted particle encoding a TNFα transgene, significant cell killing was evident and was associated with high expression of TNFα and apoptosis‐related genes. In vivo, mice with established human chondrosarcoma showed suppression of tumors upon repetitive intravenous administrations of the targeted phage. These data show that our phage‐based particle is a promising, selective, and efficient tool for targeted chondrosarcoma therapy.

Journal article

Tsafa E, Bentayebi K, Topanurak S, Yata T, Przystal J, Fongmoon D, Hajji N, Waramit S, Suwan K, Hajitou Aet al., 2020, Doxorubicin improves cancer cell targeting by filamentous phage gene delivery vectors., International Journal of Molecular Sciences, Vol: 21, ISSN: 1422-0067

Merging targeted systemic gene delivery and systemic chemotherapy against cancer, chemovirotherapy, has the potential to improve chemotherapy and gene therapy treatments and overcome cancer resistance. We introduced a bacteriophage (phage) vector, named human adeno-associated virus (AAV)/phage or AAVP, for the systemic targeting of therapeutic genes to cancer. The vector was designed as a hybrid between a recombinant adeno-associated virus genome (rAAV) and a filamentous phage capsid. To achieve tumor targeting, we displayed on the phage capsid the double-cyclic CDCRGDCFC (RGD4C) ligand that binds the alpha-V/beta-3 (αvβ3) integrin receptor. Here, we investigated a combination of doxorubicin chemotherapeutic drug and targeted gene delivery by the RGD4C/AAVP vector. Firstly, we showed that doxorubicin boosts transgene expression from the RGD4C/AAVP in two-dimensional (2D) cell cultures and three-dimensional (3D) tumor spheres established from human and murine cancer cells, while preserving selective gene delivery by RGD4C/AAVP. Next, we confirmed that doxorubicin does not increase vector attachment to cancer cells nor vector cell entry. In contrast, doxorubicin may alter the intracellular trafficking of the vector by facilitating nuclear accumulation of the RGD4C/AAVP genome through destabilization of the nuclear membrane. Finally, a combination of doxorubicin and RGD4C/AAVP-targeted suicide gene therapy exerts a synergistic effect to destroy human and murine tumor cells in 2D and 3D tumor sphere settings.

Journal article

Zhou JY, Suwan K, Hajitou A, 2020, Initial steps for the development of a phage-mediated gene replacement therapy using CRISPR-Cas9 technology, Journal of Clinical Medicine, Vol: 9, ISSN: 2077-0383

p53 gene (TP53) replacement therapy has shown promising results in cancer gene therapy. However, it has been hampered, mostly because of the gene delivery vector of choice. CRISPR-Cas9 technology (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) can knock out the mutated TP53 (mutTP53), but due to its large size, many viral vectors are not suitable or require implemented strategies that lower the therapeutic efficiency. Here, we introduced a bacteriophage or phage-based vector with the ability to target cancer cells and aimed to investigate the feasibility of using this vector to deliver CRISPR-Cas9 transgene in human lung adenocarcinoma cells. First, we produced a tumour-targeted bacteriophage carrying a CRISPR-Cas9 transgene cassette. Next, we investigated any negative impact on vector titers via quantitative polymerase chain reaction (qPCR) and colony-forming agar plate. Last, we combined Western blot analysis and immunofluorescence staining to prove cell transduction in vitro. We showed that the tumour-targeted bacteriophage can package a large-size vector genome, ~10 kb, containing the CRISPR-Cas9 sequence without any negative impact on the active or total number of bacteriophage particles. Then, we detected expression of the Cas9 in human lung adenocarcinoma cells in a targeted and efficient manner. Finally, we proved loss of p53 protein expression when a p53 gRNA was incorporated into the CRISPR-Cas9 phage DNA construct. These proof-of-concept findings support the use of engineered bacteriophage for TP53 replacement therapy in lung cancer.

Journal article

Waramit S, Suwan K, Asavarut P, Hajitou Aet al., 2020, Targeted Cancer Gene Therapy Using a Superior Bacteriophage-Based Vector Encoding Interleukin-15, 23rd Annual Meeting of the American-Society-for-Gene-and-Cell-Therapy, Publisher: CELL PRESS, Pages: 336-337, ISSN: 1525-0016

Conference paper

Chongchai A, Suwan K, Yan W, Waramit S, Zhou JY, Kongtawelert P, Pothachareon P, Hajitou Aet al., 2020, Targeted Gene Therapy Against Chondrosarcoma Using Superior Bacteriophage-Based Vector, 23rd Annual Meeting of the American-Society-for-Gene-and-Cell-Therapy, Publisher: CELL PRESS, Pages: 345-346, ISSN: 1525-0016

Conference paper

Yan W, Albahrani M, Carcaboso A, Suwan K, Hajitou Aet al., 2020, Bacteriophage-Mediated Systemic Gene Therapy of Diffuse Intrinsic Pontine Glioma Through the Blood-Brain Barrier, 23rd Annual Meeting of the American-Society-for-Gene-and-Cell-Therapy, Publisher: CELL PRESS, Pages: 161-161, ISSN: 1525-0016

Conference paper

Suwan K, Waramit S, Przystal J, Stoneham C, Bentayebi K, Asavarut P, Chongchai A, Pothachareon P, Lee K-Y, Topanurak S, Smith T, Gelovani J, Sidman R, Pasqualini R, Arap W, Hajitou Aet al., 2019, Next-generation of targeted AAVP vectors for systemic transgene delivery against cancer, Proceedings of the National Academy of Sciences of USA, Vol: 116, Pages: 18571-18577, ISSN: 0027-8424

Bacteriophage (phage) have attractive advantages as delivery sys-tems compared to mammalian viruses, but have been consideredpoor vectors because they lack evolved strategies to confrontand overcome mammalian cell barriers to infective agents. Wereasoned that improved efficacy of delivery might be achievedthrough structural modification of the viral capsid to avoid pre-and post-internalization barriers to mammalian cell transduction.We generated multifunctional hybrid AAV/phage (AAVP) particlesto enable simultaneous display of targeting ligands on the phage’sminor pIII proteins and also degradation-resistance motifs on thevery numerous pVIII coat proteins. This genetic strategy of directedevolution, bestows a next-generation of AAVP particles that fea-ture resistance to fibrinogen adsorption or neutralizing antibodies,and ability to escape endolysosomal degradation. This results insuperior gene transfer efficacyin vitroand also in preclinicalmouse models of rodent and human solid tumors. Thus, the uniquefunctions of our next-generation AAVP particles enable improvedtargeted gene delivery to tumor cells.

Journal article

Waramit S, Suwan K, Asavarut P, Ashfield R, Draper SJ, Hajitou Aet al., 2019, New strategy of cancer vaccination by a hybrid bacteriophage vector and a malaria vaccine, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy, Publisher: MARY ANN LIEBERT, INC, Pages: A13-A13, ISSN: 1043-0342

Conference paper

Yan W, Albahrani M, Carcaboso A, Suwan K, Hajitou Aet al., 2019, Bacteriophage-mediated systemic gene therapy of diffuse intrinsic pontine glioma through the blood-brain barrier, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy, Publisher: MARY ANN LIEBERT, INC, Pages: A15-A16, ISSN: 1043-0342

Conference paper

Bentayebi K, Waramit S, Yata T, Chongchai A, Suwan K, Hajitou Aet al., 2019, Design of bacteriophage vectors with potential to overcome mammalian barriers to gene delivery, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy, Publisher: MARY ANN LIEBERT, INC, Pages: A21-A21, ISSN: 1043-0342

Conference paper

Suwan K, Przystal JM, Waramit S, Pranjol ZI, Yan W, Chongchai A, Chu G, Samarth G, Carcaboso A, Hajitou Aet al., 2019, Systemic chemovirotherapy against human glioblastoma using temozolomide and bacteriophage-guided gene therapy, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy, Publisher: MARY ANN LIEBERT, INC, Pages: A29-A29, ISSN: 1043-0342

Conference paper

Przystal J, Waramit S, Pranjol MZI, Yan W, Chu G, Chongchai A, Samarth G, Olaciregui N, Tabatabai G, Carcaboso A, Aboagye E, Suwan K, Hajitou Aet al., 2019, Efficacy of systemic temozolomide-activated phage-targeted gene therapy in human glioblastoma, EMBO Molecular Medicine, Vol: 11, Pages: 1-21, ISSN: 1757-4676

Glioblastoma multiforme (GBM) is the most lethal primary intracranial malignant neoplasm in adults and most resistant to treatment. Integration of gene therapy and chemotherapy, chemovirotherapy, has the potential to improve treatment. We have introduced an intravenous bacteriophage (phage) vector for dual targeting of therapeutic genes to glioblastoma. It is a hybrid AAV/phage, AAVP, designed to deliver a recombinant adeno‐associated virus genome (rAAV) by the capsid of M13 phage. In this vector, dual tumor targeting is first achieved by phage capsid display of the RGD4C ligand that binds the αvβ3 integrin receptor. Second, genes are expressed from a tumor‐activated and temozolomide (TMZ)‐induced promoter of the glucose‐regulated protein, Grp78. Here, we investigated systemic combination therapy using TMZ and targeted suicide gene therapy by the RGD4C/AAVP‐Grp78. Firstly, in vitro we showed that TMZ increases endogenous Grp78 gene expression and boosts transgene expression from the RGD4C/AAVP‐Grp78 in human GBM cells. Next, RGD4C/AAVP‐Grp78 targets intracranial tumors in mice following intravenous administration. Finally, combination of TMZ and RGD4C/AAVP‐Grp78 targeted gene therapy exerts a synergistic effect to suppress growth of orthotopic glioblastoma.

Journal article

Przystal JM, Hajji N, Khozoie C, Renziehausen A, Qingyu Z, Abaitua F, Hajitou A, Suwan K, Want E, Bomalaski J, Szlosarek P, O'Neill K, Crook T, Syed Net al., 2018, Efficacy of arginine depletion by ADI-PEG20 in an intracranial model of GBM, Cell Death and Disease, Vol: 9, ISSN: 2041-4889

Glioblastoma multiforme (GBM) remains a cancer with a poor prognosis and few effective therapeutic options. Successful medical management of GBM is limited by the restricted access of drugs to the central nervous system (CNS) caused by the blood brain barrier (BBB). We previously showed that a subset of GBM are arginine auxotrophic because of transcriptional silencing of ASS1 and/or ASL and are sensitive to pegylated arginine deiminase (ADI-PEG20). However, it is unknown whether depletion of arginine in peripheral blood in vivo has therapeutic activity against intracranial disease. In the present work, we describe the efficacy of ADI-PEG20 in an intracranial model of human GBM in which tumour growth and regression are assessed in real time by measurement of luciferase activity. Animals bearing intracranial human GBM tumours of varying ASS status were treated with ADI-PEG20 alone or in combination with temozolomide and monitored for tumour growth and regression. Monotherapy ADI-PEG20 significantly reduces the intracranial growth of ASS1 negative GBM and extends survival of mice carrying ASS1 negative GBM without obvious toxicity. The combination of ADI-PEG20 with temozolomide (TMZ) demonstrates enhanced effects in both ASS1 negative and ASS1 positive backgrounds.Our data provide proof of principle for a therapeutic strategy for GBM using peripheral blood arginine depletion that does not require BBB passage of drug and is well tolerated. The ability of ADI-PEG20 to cytoreduce GBM and enhance the effects of temozolomide argues strongly for its early clinical evaluation in the treatment of GBM.

Journal article

Samarth G, Suwan K, Al-Bahrani M, Asavarut P, Hajitou Aet al., 2018, THE NOVEL THERAPEUTIC CURCUMIN ENHANCES TARGETED BACTERIOPHAGE MEDIATED IN-VITRO CELL DEATH IN PRIMARY HUMAN DIFFUSE INTRINSIC PONTINE GLIOMA, 23rd Annual Scientific Meeting and Education Day of the Society-for-Neuro-Oncology (SNO) / 3rd CNS Anticancer Drug Discovery and Development Conference, Publisher: OXFORD UNIV PRESS INC, Pages: 210-210, ISSN: 1522-8517

Conference paper

Samarth G, Suwan K, Al-Bahrani M, Asavarut P, Hajitou Aet al., 2018, THE NOVEL THERAPEUTIC CURCUMIN ENHANCES TARGETED BACTERIOPHAGE MEDIATED IN-VITRO CELL DEATH IN PRIMARY HUMAN DIPG, 13th Meeting of the European-Association-of-Neurooncology (EANO), Publisher: OXFORD UNIV PRESS INC, Pages: 284-284, ISSN: 1522-8517

Conference paper

Asavarut P, Suwan K, Chu G, Gomez PV, Yata T, Barton ES, Hajitou Aet al., 2018, A Hybrid Phagemid-Derived Vector for Systemic Targeted Cancer Gene Therapy and Recombinant Virus Production, 21st Annual Meeting of the American-Society-of-Gene-and-Cell-Therapy (ASGCT), Publisher: CELL PRESS, Pages: 47-47, ISSN: 1525-0016

Conference paper

Hajitou A, Campbell S, Suwan K, Waramit S, Aboagye Eet al., 2018, Selective inhibition of histone deacetylation in melanoma increases targeted gene delivery by a bacteriophage viral vector, Cancers, Vol: 10, ISSN: 2072-6694

The previously developed adeno-associated virus/phage (AAVP) vector, a hybrid between M13 bacteriophage (phage) viruses that infect bacteria only and human Adeno-Associated Virus (AAV), is a promising tool in targeted gene therapy against cancer. AAVP can be administered systemically and made tissue specific through the use of ligand-directed targeting. Cancer cells and tumor-associated blood vessels overexpress the αν integrin receptors, which are involved in tumor angiogenesis and tumor invasion. AAVP is targeted to these integrins via a double cyclic RGD4C ligand displayed on the phage capsid. Nevertheless, there remain significant host-defense hurdles to the use of AAVP in targeted gene delivery and subsequently in gene therapy. We previously reported that histone deacetylation in cancer constitutes a barrier to AAVP. Herein, to improve AAVP-mediated gene delivery to cancer cells, we combined the vector with selective adjuvant chemicals that inhibit specific histone deacetylases (HDAC). We examined the effects of the HDAC inhibitor C1A that mainly targets HDAC6 and compared this to sodium butyrate, a pan-HDAC inhibitor with broad spectrum HDAC inhibition. We tested the effects on melanoma, known for HDAC6 up-regulation, and compared this side by side with a normal human kidney HEK293 cell line. Varying concentrations were tested to determine cytotoxic levels as well as effects on AAVP gene delivery. We report that the HDAC inhibitor C1A increased AAVP-mediated transgene expression by up to ~9-fold. These findings indicate that selective HDAC inhibition is a promising adjuvant treatment for increasing the therapeutic value of AAVP.

Journal article

Waramit S, Suwan K, Asavarut P, Hajitou Aet al., 2017, The augmentation of tumour-associated antigen expression by a hybrid bacteriophage/AAV vector for CAR T cell therapy, European-Society-of-Gene-and-Cell-Therapy (ESCGT) Congress, Publisher: MARY ANN LIEBERT, INC, Pages: A39-A39, ISSN: 1043-0342

Conference paper

Albahrani M, Asavarut P, Suwan K, Hajitou Aet al., 2017, Selective cytokine gene therapy for the treatment of paediatric brain cancer, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy / Joint UK-Regenerative-Medicine-Platform Meeting, Publisher: MARY ANN LIEBERT, INC, Pages: A33-A33, ISSN: 1043-0342

Conference paper

Suwan K, Tsafa E, Przystal J, Asavarut P, Hajitou Aet al., 2017, A Hybrid Phage-AAV vector: the new partner for cancer combination chemotherapy, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy / Joint UK-Regenerative-Medicine-Platform Meeting, Publisher: MARY ANN LIEBERT, INC, Pages: A21-A22, ISSN: 1043-0342

Conference paper

Tsafa E, Albahrani M, Bentayebi K, Przystal J, suwan K, Hajitou Aet al., 2016, The natural dietary genistein boosts bacteriophage-mediated cancer cell killing by improving phage-targeted tumor cell transduction, Oncotarget, Vol: 7, Pages: 52135-52149, ISSN: 1949-2553

Gene therapy has long been regarded as a promising treatment for cancer. However, cancergene therapy is still facing the challenge of targeting gene delivery vectors specifically totumors when administered via clinically acceptable non-invasive systemic routes (i.e.intravenous). The bacteria virus, bacteriophage (phage), represents a new generation ofpromising vectors in systemic gene delivery since their targeting can be achieved throughphage capsid display ligands, which enable them to home to specific tumor receptors withoutthe need to ablate any native eukaryotic tropism. We have previously reported a tumorspecific bacteriophage vector named adeno-associated virus/phage, or AAVP, in which geneexpression is under a recombinant human rAAV2 virus genome targeted to tumors via aligand-directed phage capsid. However, cancer gene therapy with this tumor-targeted vectorachieved variable outcomes ranging from tumor regression to no effect in both experimentaland natural preclinical models. Herein, we hypothesized that combining the natural dietarygenistein, with proven anticancer activity, would improve bacteriophage anticancer safetherapy. We show that combination treatment with genistein and AAVP increased targetedcancer cell killing by AAVP carrying the gene for Herpes simplex virus thymidine kinase(HSVtk) in 2D tissue cultures and 3D tumor spheroids. We found this increased tumor cellkilling was associated with enhanced AAVP-mediated gene expression. Next, weestablished that genistein protects AAVP against proteasome degradation and enhancesvector genome accumulation in the nucleus. Combination of genistein and phage-guidedvirotherapy is a safe and promising strategy that should be considered in anticancer therapywith AAVP.

Journal article

Suwan K, Tsafa E, Przystal J, Asavarut P, Hajitou Aet al., 2016, Hybrid AAV/Phage Vector Enhances Chemotherapy Efficacy Against Cancer, 19th Annual Meeting of the American Society of Gene and Cell Therapy (ASGCT), Publisher: Nature Publishing Group, Pages: S265-S266, ISSN: 1525-0024

Conference paper

Donnelly A, Yata T, Bentayebi K, Suwan K, Hajitou Aet al., 2015, Bacteriophage mediates efficient gene transfer in combination with conventional transfection reagents, Viruses-Basel, Vol: 7, Pages: 6476-6489, ISSN: 1999-4915

The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system i) provides enhanced phage-mediated gene transfer, ii) is applicable for laboratory transfection processes and iii) shows promise within industry for large-scale gene transfer applications.

Journal article

Yata T, Lee ELQ, Suwan K, Syed N, Asavarut P, Hajitou Aet al., 2015, Modulation of extracellular matrix in cancer is associated with enhanced tumor cell targeting by bacteriophage vectors, Molecular Cancer, Vol: 14, ISSN: 1476-4598

Journal article

Suwan K, Choocheep K, Hatano S, Kongtawelert P, Kimata K, Watanabe Het al., 2009, Versican/PG-M Assembles Hyaluronan into Extracellular Matrix and Inhibits CD44-mediated Signaling toward Premature Senescence in Embryonic Fibroblasts, JOURNAL OF BIOLOGICAL CHEMISTRY, Vol: 284, Pages: 8596-8604

Journal article

Suwan K, Hatano S, Kongtawelert P, Pothacharoen P, Watanabe Het al., 2009, Alteration of chondroitin sulfate composition on proteoglycan produced by knock-in mouse embryonic fibroblasts whose versican lacks the A subdomain, UPSALA JOURNAL OF MEDICAL SCIENCES, Vol: 114, Pages: 73-81, ISSN: 0300-9734

Journal article

Matsumoto K, Kamiya N, Suwan K, Atsumi F, Shimizu K, Shinomura T, Yamada Y, Kimata K, Watanabe Het al., 2006, Identification and characterization of versican/PG-M aggregates in cartilage, JOURNAL OF BIOLOGICAL CHEMISTRY, Vol: 281, Pages: 18257-18263

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00674336&limit=30&person=true