Summary
Biomimetic Soft Matter and DNA Nanotechnology
Group website: www.dimichelelab.org
Lorenzo Di Michele's group studies the fascinating physics, chemistry, and (occasionally) biology of complex nanoscale systems.
We investigate problems of fundamental relevance as well as develop new technologies and, to do so, we often make use of the tools of DNA nanotechnology.
We like to adopt a multidisciplinary approach, that combines experimental methods, theoretical modelling, and computer simulations.
Current areas of research include
- Self assembly and crystallisation of amphiphilic DNA nanostructures, with applications to encapsulation/release/delivery technologies.
- Multivalent membrane-membrane and membrane particles interactions, including synthetic lipid membranes and cells.
- Artificial cells and bottom-up synthetic biology.
- Applications of DNA nanotech to super-resolution optical microscopy (DNA-PAINT).
Lorenzo's brief CV
Lorenzo completed his undergraduate and master degree at the University of L'Aquila (Abruzzo, Italy), before moving to the Cavendish Laboratory, University of Cambridge where he complete his PhD in physics (2013). He then held, in the same institution, a Oppenheimer Early Career Research Fellowship (2013-2016), a Leverhulme Early Career Research Fellowship (2016-2017) and a Royal Society University Research Fellowship (2018 - ). In August 2019 Lorenzo joined the Department of Chemistry at Imperial as a RS URF and Lecturer.
Full CV here
Publications
Journals
Malouf L, Tanase DA, Fabrini G, et al. , 2023, Sculpting DNA-based synthetic cells through phase separation and phase-targeted activity, Chem, Vol:9, ISSN:2451-9308, Pages:3347-3364
Walczak M, Mancini L, Xu J, et al. , 2023, A Synthetic Signaling Network Imitating the Action of Immune Cells in Response to Bacterial Metabolism, Advanced Materials, ISSN:0935-9648
Rubio-Sanchez R, Mognetti BM, Cicuta P, et al. , 2023, DNA-Origami Line-Actants Control Domain Organization and Fission in Synthetic Membranes, Journal of the American Chemical Society, Vol:145, ISSN:0002-7863, Pages:11265-11275
Walczak M, Brady RA, Leathers A, et al. , 2023, Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures, Journal of Chemical Physics, Vol:158, ISSN:0021-9606
Morzy D, Tekin C, Caroprese V, et al. , 2023, Interplay of the mechanical and structural properties of DNA nanostructures determines their electrostatic interactions with lipid membranes, Nanoscale, Vol:15, ISSN:2040-3364, Pages:2849-2859