Imperial College London

DrLorenzoDi Michele

Faculty of Natural SciencesDepartment of Chemistry

Honorary Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 3262l.di-michele Website

 
 
//

Location

 

Molecular Sciences Research HubWhite City Campus

//

Summary

 

Summary

Biomimetic Soft Matter and DNA Nanotechnology

Group website: www.dimichelelab.org

Lorenzo Di Michele's group studies the fascinating physics, chemistry, and (occasionally) biology of complex nanoscale systems.

We investigate problems of fundamental relevance as well as develop new technologies and, to do so, we often make use of the tools of DNA nanotechnology.

We like to adopt a multidisciplinary approach, that combines experimental methods, theoretical modelling, and computer simulations.  

Current areas of research include

- Self assembly and crystallisation of amphiphilic DNA nanostructures, with applications to encapsulation/release/delivery technologies.

- Multivalent membrane-membrane and membrane particles interactions, including synthetic lipid membranes and cells.

- Artificial cells and bottom-up synthetic biology.

- Applications of DNA nanotech to super-resolution optical microscopy (DNA-PAINT).

Lorenzo's brief CV

Lorenzo completed his undergraduate and master degree at the University of L'Aquila (Abruzzo, Italy), before moving to the Cavendish Laboratory, University of Cambridge where he complete his PhD in physics (2013). He then held, in the same institution, a Oppenheimer Early Career Research Fellowship (2013-2016), a Leverhulme Early Career Research Fellowship (2016-2017) and a Royal Society University Research Fellowship (2018 - ). In August 2019 Lorenzo joined the Department of Chemistry at Imperial as a RS URF and Lecturer.

Full CV here

Publications

Journals

Takamori S, Cicuta P, Takeuchi S, et al., 2022, DNA-assisted selective electrofusion (DASE) of Escherichia coli and giant lipid vesicles, Nanoscale, Vol:14, ISSN:2040-3364, Pages:14255-14267

Fletcher M, Zhu J, Rubio-Sanchez R, et al., 2022, DNA-Based Optical Quantification of Ion Transport across Giant Vesicles, Acs Nano, ISSN:1936-0851

Leathers A, Walczak M, Brady R, et al., 2022, Reaction-diffusion patterning of DNA-based artificial cells, Journal of the American Chemical Society, Vol:144, ISSN:0002-7863, Pages:17468-17476

Paez Perez M, Russell A, Cicuta P, et al., 2022, Modulating membrane fusion through the design of fusogenic DNA circuits and bilayer composition, Soft Matter, Vol:18, ISSN:1744-683X, Pages:7035-7044

Kaufhold WT, Pfeifer W, Castro CE, et al., 2022, Probing the mechanical properties of DNA nanostructures with metadynamics, Acs Nano, Vol:16, ISSN:1936-0851, Pages:8784-8797

More Publications