Imperial College London

DrLorenzoMacorini

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Reader in Structural Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6078l.macorini

 
 
//

Assistant

 

Ms Ruth Bello +44 (0)20 7594 6040

 
//

Location

 

325Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

134 results found

Abu-Salma D, Vollum RL, Macorini L, 2021, Modelling punching shear failure at edge slab-column connections by means of nonlinear joint elements, Structures, Vol: 34, Pages: 630-652, ISSN: 2352-0124

This paper is concerned with the modelling of punching shear failure at edge columns of flat slabs without shear reinforcement. Punching failure at edge columns is much less researched than at interior columns despite typical buildings having more edge than interior columns. The paper uses nonlinear finite element analysis (NLFEA) to study the influence on punching resistance of parameters including column aspect ratio and loading eccentricity. The NLFEA is carried out using both 3D solid elements and a Joint Shell Punching Model (JSPM) which combines nonlinear shell elements with nonlinear joint elements that incorporate the failure criterion of the Critical Shear Crack Theory (CSCT). Both constant and varying loading eccentricities are investigated since near failure eccentricity at edge column connections typically reduces below that calculated with elastic analysis due to moment being redistributed from the support to span. This reduction in eccentricity is beneficial since punching resistance is shown to depend on the final loading eccentricity. Consequently, designing for punching on the basis of elastic edge column moments is overly conservative.

Journal article

Plavsic A, Panto B, Chisari C, Macorini L, Izzuddin B, Boem I, Gattesco Net al., 2021, Nonlinear simulation of masonry vaults under earthquake loading, CompDyn 2021, Publisher: Institute of Structural Analysis and Antiseismic ResearchSchool of Civil Engineering, Pages: 595-606

Masonry vaults are present in a large number of historical structures and often used as floor-ing and roofing systems in monumental palaces and religious buildings, typically incorporat-ing no backfill. Many of these structures are located in seismic regions and have been shownto be particularly vulnerable during recent earthquakes, with a need for accurate modelling to avoid future losses. Masonry vaults are often analysed using limit analysis procedures un-der the hypotheses of no-tension material and absence of sliding along the masonry joints.However, this method can be inaccurate for barrel vaults found in buildings, which are typi-cally slender with no backfill. In this case, the masonry tensile strength and the progressive damage propagation play an important role in the nonlinear behaviour and ultimate strength of the vault. In this study, a detailed mesoscale finite element mesoscale approach is used to model slender unreinforced barrel vaults subjected to cyclic quasi-static and dynamic load-ing. According to this approach, 3D solid elements connected by 2D damage-plasticity inter-faces are used to represent the arrangement of bricks and mortar present in the masonry. Theproposed numerical description is first validated against the results from physical tests on a barrel vault under quasi-static cyclic loading. Subsequently, the shear response of a prototype vault is analysed by performing nonlinear simulations under prescribed horizontal displace-ments at the supports, considering also the influence of previous damage induced by earth-quakes with different magnitudes.

Conference paper

Grosman S, Bilbao AB, Macorini L, Izzuddin BAet al., 2021, Numerical modelling of three-dimensional masonry arch bridge structures, Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, Vol: 174, Pages: 96-113, ISSN: 1755-0777

A substantial part of the underline bridges that belong to the asset collection of the main railway and roadway infrastructure operators in the UK and Europe have the structural shape of arches, typically constructed from brick/stone masonry. Current assessment methods, which consider 2D descriptions for masonry bridges, do not enable an accurate representation of the typical 3D response, and often they do not provide realistic predictions of the development of damage in the various bridge components including arches, piers and spandrel walls. In this paper, two alternative 3D FE modelling strategies offering different balance between sophistication and computational efficiency are presented. The first approach is based upon a detailed mesoscale masonry model, where a distinction is made between constituents allowing for an accurate description of masonry under various bond conditions. Alongside elastic solid elements representing the bricks, nonlinear interface elements are used to model the mortar joints and the potential cracks across the brick bulk. The second approach is based on macroscale representation, where a homogeneous description of masonry is assumed employing elasto-plastic solid elements with damage to represent the masonry components of arch bridges. In both approaches, backfill is modelled by elasto-platic solid elements and the interactions between the spandrel walls and the backfill and arches, as well as between the backfill and the arches’ extrados, are explicitly incorporated to the model. This interaction effect is investigated with the two approaches, and comparisons are made between the respective simulations to illustrate the relative benefits of mesoscale and macroscale modelling.

Journal article

Abu-Salma D, Vollum R, Macorini L, 2021, Punching shear in edge slab-column connections, fib Symposium Lisbon, ISSN: 2617-4820

Conference paper

Panto B, Chisari C, Macorini L, Izzuddin Bet al., 2021, A Macroscale Modelling Approach for Nonlinear Analysis of Masonry Arch Bridges, Bartolomeo Panto

Conference paper

Chisari C, Macorini L, Izzuddin B, Amadio Cet al., 2021, Analysis of the stress and deformation states in the vertical flat jack test, International Journal of Masonry Research and Innovation, Vol: 6, Pages: 21-44, ISSN: 2056-9459

Performing a realistic assessment of unreinforced masonry structures involves designing and executing appropriate experimental tests on masonrycomponentsfor determining the material model parameters to be used in structural analysis. Consideringrecent developmentsin which inverse analysis was used as calibration framework, a vertical flat-jack testis investigated in this paper. Two simplified models are describedfor the analysisof the stress state in the masonry due to the pressure transferred by the flat-jack. Furthermore, with the aim of designing the sensor setup for the test, aPOD analysis on the deformation state of the structure is carried out, highlighting the basic deformation modes which govern the response. The results show that high stresses and local modes can occur in the proximity of the flat-jack,and thus local use of FRP reinforcement is recommended to avoid undesired brittle crack propagationwhich may prevent accurate calibration of mortar joint mechanical characteristics.

Journal article

Tubaldi E, Minga E, Macorini L, Izzuddin Bet al., 2020, Mesoscale analysis of multi-span masonry arch bridges, Engineering Structures, Vol: 225, Pages: 1-16, ISSN: 0141-0296

Masonry arch bridges often include multiple spans, where adjacent arches and piers interact with each other giving rise to a complex response under traffic loading. Thus, the assumption commonly used in practical assessment that multi-span masonry viaducts behave as a series of independent single-span structures, may not be realistic for many configurations. While several experimental and numerical studies have been conducted to investigate single-span masonry arches and bridges,only limited research has been devoted to the analysis of the response of multi-span masonry bridges. This study investigates numerically masonry arch bridges with multiple spans subjected to vertical loading. For this purpose, an advanced finite element description,which is based upon a mesoscale representation for masonry and accounts for both material and geometric nonlinearities, is employed to shed some light on the actual behaviour of these structural systems. A validation study is first carried out to confirm that the adopted modelling strategy is capable to accurately simulate previous experimental results.Then, the influence of some critical geometrical and mechanical parameters that affect the bridge response is evaluated through a parametric study.The effects of pier settlements and brickwork defects are also investigated, as well as the interaction between adjacent spans through comparisons against the response of single-span counterparts.

Journal article

Chisari C, Macorini L, Izzuddin B, 2020, Mesoscale modelling of a masonry building subjected to earthquake loading, Journal of Structural Engineering, Vol: 147, Pages: 04020294-1-04020294-14, ISSN: 0733-9445

Masonry structures constitute an important part of the built environment and architectural heritage in seismic areas. A large number of these old structures showed inadequate performance and suffered substantial damage under past earthquakes. Realistic numerical models are required for accurate response predictions and for addressing the implementation of effective strengthening solutions. A comprehensive mesoscale modeling strategy explicitly allowing for masonry bond is presented in this paper. It is based on advanced nonlinear material models for interface elements simulating cracks in mortar joints and brick/block units under cyclic loading. Moreover, domain decomposition and mesh tying techniques are used to enhance computational efficiency in detailed nonlinear simulations. The potential of this approach is shown with reference to a case study of a full-scale unreinforced masonry building previously tested in laboratory under pseudodynamic loading. The results obtained confirm that the proposed modeling strategy for brick/block-masonry structures leads to accurate representations of the seismic response of three-dimensional (3D) building structures, both at the local and global levels. The numerical-experimental comparisons show that this detailed modeling approach enables remarkably accurate predictions of the actual dynamic characteristics, along with the main resisting mechanisms and crack patterns.

Journal article

Minga E, Macorini L, Izzuddin B, Calio Iet al., 2020, 3D macroelement approach for nonlinear FE analysis of URM components subjected to in-plane and out-of-plane cyclic loading, Engineering Structures, Vol: 220, Pages: 1-22, ISSN: 0141-0296

The paper presents a novel 3D macroelement approach for efficient and accurate nonlinear analysis of unreinforced masonry components subjected to in-plane and out-of-plane cyclic loading. A macroscopic description for masonry is employed, where macroelements, consisting of deformable blocks interacting through cohesive interfaces, are used to represent large portions of masonry walls, enhancing computational efficiency. Enriched kinematic characteristics are adopted for the homogeneous blocks, where in-plane shear and out-of-planebending modes are described by two independent Lagrangian parameters. Moreover, a detailed material model for the nonlinear interfaces connecting adjacent elements enables an accurate representation of complex failure modes and cracking patterns in masonry walls. As a result, the proposed FE strategy can be employed for accurate response predictions of large masonry structures subjected to cyclic loading conditions. The accuracy of the macroelement approach is validated through comparisons against results of experimental tests of solid and perforated masonry walls under in-plane and out-of-plane loading.

Journal article

Setiawan A, Vollum RL, Macorini L, Izzuddin BAet al., 2020, Punching of RC slabs without transverse reinforcement supported on elongated columns, Structures, Vol: 27, Pages: 2048-2068, ISSN: 2352-0124

The paper investigates the influence of support elongation on punching resistance at internal slab column connections without shear reinforcement. Nonlinear finite element analysis (NLFEA) with 3-D solid elements is used to study the influence of column elongation on stress and strain in the slab around the column. Punching failure is shown to be triggered by localised peaks in shear stress around the corners of the support. Significantly, one-way shear is shown to increase the shear resistance of slabs supported on columns with cross sectional dimensions greater than around six times the slab effective depth (d). The common laboratory practice of supporting slabs in punching tests on elongated plates rather than columns is investigated numerically and is found to be reasonable despite uplift occurring in the central region of elongated plates. NLFEA with solid elements gives useful insights into punching failure but nonlinear shell elements are better suited to the practical assessment of slabs in building structures. The disadvantage of conventional nonlinear shell elements is that shear failure can only be detected through post processing of results. To circumvent this, the authors have previously developed a novel modelling approach in which 3-D joint elements are used to connect shell elements located to either side of a punching control perimeter positioned at 0.5 from the column face. The joint shear resistance is calculated using the Critical Shear Crack Theory (CSCT) in which punching resistance is related to slab rotation. Based on insights gained using the solid element modelling, this paper extends the use of the joint model to the modelling of punching failure at elongated supports by including one-way joints to model linear shear.

Journal article

Abu-Salma D, Vollum R, Macorini L, 2020, Punching Shear at Slab-Edge Column Connections, 13th fib International PhD-Symposium in Civil Engineering

Conference paper

Setiawan A, Vollum RL, Macorini L, Izzuddin BAet al., 2020, Punching shear design of RC flat slabs supported on wall corners, Structural Concrete, Vol: 21, Pages: 859-874, ISSN: 1464-4177

Reinforced concrete buildings are typically braced with shear walls positioned around lift shafts and stairs. Vertical transfer of load from slab to walls leads to a concentration of shear stress in the slab at wall ends and corners, which needs to be considered in punching shear design. This issue is not addressed in EN 1992 (2004) and only partially addressed in fib Model Code 2010 leaving engineers to resort to their own judgment. Consequently, consideration of punching shear at wall corners can be overlooked entirely or not properly addressed through lack of knowledge. The paper addresses this issue by proposing a method for calculating the design shear stress at wall corners for use in conjunction with the Critical Shear Crack Theory. The method is initially validated against test results for slabs supported on elongated columns as well as numerical simulations. Subsequently, the method is extended to the punching design of a slab supported by a wall corner. The proposed analysis of the slab‐wall corner junction is validated against the predictions of nonlinear finite element analysis (NLFEA) employing 3‐D solid elements as well as the joint‐shell punching model (JSPM) previously developed by the authors.

Journal article

Setiawan A, Vollum R, Macorini L, Izzuddin Bet al., 2020, Numerical modelling of punching shear failure of RC flat slabs with shear reinforcement, Magazine of Concrete Research, ISSN: 0024-9831

This paper utilises non-linear finite-element analysis with three-dimensional (3D) solid elements to gain insight into the role of shear reinforcement in increasing punching shear resistance at internal columns of flat slabs. The solid element analysis correctly captures the experimentally observed gradual decrease in concrete contribution to shear resistance with increasing slab rotation and the failure mode but is very computationally demanding. As an alternative, the paper presents a novel approach, in which 3D joint elements are combined with non-linear shell elements. Punching failure is modelled with joint elements positioned around a control perimeter located at 0.5d from the column face (where d is the slab effective depth). The joint elements connect the nodes of shell elements located to either side of the punching control perimeter. The punching resistance of the joints is related to the slab rotation using the failure criterion of the critical shear crack theory. The joint-shell punching model (JSPM) considers punching failure both within the shear-reinforced region and due to crushing of concrete struts near the support region. The JSPM is shown to accurately predict punching resistance while requiring significantly less computation time than 3D solid element modelling.

Journal article

Fieber A, Gardner L, Macorini L, 2020, Structural steel design using second-order inelastic analysis with strain limits, Journal of Constructional Steel Research, Vol: 168, Pages: 1-19, ISSN: 0143-974X

Steel framed structures are affected, to greater or lesser extent, by (i) geometrical nonlinearity associated with the change in geometry of the structure under load and (ii) material nonlinearity related to the onset and spread of plasticity. In traditional design approaches, the design forces and moments within structural members are usually determined from simplified structural analyses (e.g. first or second-order elastic analysis), after which member design checks are performed to assess the strength and stability of the individual members. The extent to which the strength and deformation capacity of cross-sections is affected by local buckling is typically assessed through the concept of cross-section classification. For example, only compact (Class 1) cross-sections are considered to possess sufficient rotation capacity for plastic hinges to develop and for inelastic analysis methods to be used. This approach results in step-wise capacity predictions and is considered to be overly simplistic. Since the structural analysis of steel framed structures is typically performed using beam finite elements, which are unable to explicitly capture local buckling, a more sophisticated treatment of the available deformation capacity is required if inelastic analysis methods are to be used for all cross-section classes. A novel method of design by advanced inelastic analysis has recently been developed (Gardner et al., 2019a; Fieber et al., 2019a, 2018a, 2018b [[1], [2], [3], [4]]), in which strain limits are employed to represent the effects of local buckling in beam finite element models and thereby control the spread of plasticity and level of force/moment redistribution within a structure. It is thus possible to use a consistent advanced analysis framework to design structures composed of cross-sections of any class. In the present paper, application of the proposed design method to continuous beams and planar frames is illustrated and assessed. Ultimate load capacity p

Journal article

Chisari C, Macorini L, Izzuddin B, 2020, Multiscale model calibration by inverse analysis for nonlinear simulation of masonry structures under earthquake loading, International Journal for Multiscale Computational Engineering, Vol: 18, Pages: 241-263, ISSN: 1543-1649

The prediction of the structural response of masonry structures under extreme loading conditions, including earthquakes,requiresthe use of advanced material descriptionsto represent the nonlinear behaviour of masonry. In general, micro-and mesoscale approaches are very computationally demanding, thus at present they are used mainly for detailed analysis of small masonry components. Conversely macroscale models, where masonry is assumed as a homogeneous material, aremore efficient and suitable for nonlinear analysis of realistic masonry structures. However, the calibration of the material parameters for such models, which is generally basedon physical testing of entire masonry components, remains an open issue. In this paper, a multiscale approach is proposed, in which an accuratemesoscale modelaccounting for the specific masonry bond is utilised invirtual tests for the calibration of a more efficient macroscale representation assumingenergy equivalence between the two scales. Since the calibration is performed offlineat the beginning of the analysis, the method is computationally attractive compared to alternativehomogenisation techniques. The proposed methodologyis applied to a case study consideringthe results obtained in previous experimental testson masonry components subjected to cyclic loading, and on a masonry building under pseudo-dynamic conditions representingearthquake loading.The results confirmthepotential of the proposedapproach and highlight somecritical issues, such asthe importance of selecting appropriatevirtual tests for model calibration,which can significantlyinfluence accuracy and robustness.

Journal article

Fieber AC, Gardner L, Macorini L, 2020, Advanced analysis with strain limits for the design of steel structures

Structural analysis of steel frames is typically performed using beam finite elements. These elements cannot capture local buckling explicitly and hence limitations on the local strength and rotation capacity of members are required for design purposes. Traditionally, this is achieved by classifying cross-sections and defining class-specific restrictions on the analysis type (i.e. elastic or plastic design) and cross-section design resistance (i.e. plastic, elastic or effective bending capacity). This approach is however considered to be overly simplistic and creates artificial 'steps' in the capacity predictions of structural systems. A more consistent approach is proposed herein, whereby a second order global plastic analysis is performed with strain limits accounting for the effects of local buckling and controlling the deformation capacity of each cross-section. The strain limits are obtained from the Continuous Strength Method. Strains are averaged over a characteristic length to exploit the beneficial effects of moment gradients. The proposed method is applied to members, continuous beams and frames and is shown to be more consistent and user-friendly than current structural steel design methods.

Conference paper

Occhipinti G, Izzuddin B, Macorini L, Calio Iet al., 2020, Realistic seismic assessment of RC buildings with masonry infills using 3D high-fidelity simulations, Pages: 1234-1245

This paper presents a high fidelity nonlinear modelling strategy for accurate response predictions of reinforced concrete (RC) framed buildings subjected to earthquakes. The proposed numerical approach is employed to investigate the seismic performance of a 10-storey building, which is representative of many existing RC structures designed with no consideration of earthquake loading by following design strategies typically used in Italy before the introduction of the first seismic regulations. The seismic response of the representative building is investigated through detailed nonlinear dynamic simulations using ADAPTIC, an advanced finite element code for nonlinear analysis of structures under extreme loading. The analysed structure is described by 3D models, where beam-column and shell elements, both allowing for geometric and material nonlinearity, are employed to represent RC beams, columns and floor slabs respectively. Furthermore, in order to model the influence of non-structural components interacting with the main frame elements, masonry infill panels are described using a novel 2D discrete macro-element representation, which has been purposely developed within a FE framework and implemented in ADAPTIC. The nonlinear dynamic simulations are performed considering sets of natural accelerograms acting simultaneously along the two main horizontal and the vertical directions and compatible with the design spectrum for the Near Collapse Limit State (NCLS). To improve computational efficiency, which is critical when investigating the nonlinear dynamic response of large structures, a partitioning approach, previously developed at Imperial College, has been adopted. The numerical results, obtained from the accurate 3D nonlinear dynamic simulations, have shown an extremely poor seismic performance of the building, for which collapse is predicted for seismic events characterized by lower magnitude compared to the expected more catastrophic earthquake. The comparison of

Conference paper

Abu-Salma D, Vollum R, Macorini L, Setiawan Aet al., 2020, Punching shear at slab-edge column connections, Pages: 622-630

This paper is concerned with punching shear design at edge column connections of flat slabs. Significantly, punching failure is much less researched at edge columns of flat slabs than at interior connections despite typical buildings having more edge than interior columns. In both cases, punching failure is undesirable since it can result in progressive collapse owing to load being redistributed from the failing connection to the surrounding connections. The paper considers the influence of eccentricity of loading and column aspect ratio on punching shear resistance at edge columns. Finite element analysis (FEA) shows that shear stress in the slab is concentrated towards the ends of elongated columns which are commonly found in residential buildings. This problem has not been widely researched either experimentally or numerically. Elastic shear field analysis is used to study the influence of column aspect ratio and loading eccentricity on the shear stress distribution around a punching control perimeter positioned at 0.5d from the column face where d is the slab effective depth. Comparisons are made with shear stress distributions obtained with nonlinear finite element analysis (NLFEA) using 3D-solid elements as well as linear and nonlinear shell elements. The NLFEA with solid elements is initially calibrated using experimental data. Subsequently, it is used to carry out parametric studies which consider the effect of varying: 1) the column cross-section dimensions and 2) loading eccentricity. The results of the NLFEA are used to assess two alternative methods for calculating punching shear resistance at edge columns using the Critical Shear Crack Theory (CSCT). The paper presents a refined method based on shear field analysis for calculating the punching shear resistance of flat slabs supported on elongated edge columns.

Conference paper

Demirci C, Malaga Chuquitaype C, Macorini L, 2019, Seismic shear and acceleration demands in multi-storey cross-laminated timber buildings, Engineering Structures, Vol: 198, ISSN: 0141-0296

A realistic estimation of seismic shear demands is essential for the design and assessment of multi-storey buildings and for ensuring the activation of ductile failure modes during strong ground-motion. Likewise, the evaluation of seismic floor accelerations is fundamental to the appraisal of damage to non-structural elements and building contents. Given the relative novelty of tall timber buildings and their increasing popularity, a rigorous evaluation of their shear and acceleration demands is all the more critical and timely. For this purpose, this paper investigates the scaling of seismic shear and acceleration demands in multi- storey cross-laminated timber (CLT) buildings and its dependency on various structural properties. Special attention is given to the influence of the frequency content of the ground-motion. A set of 60 CLT buildings of varying heights representative of a wide range of structural configurations is subjected to a large dataset of 1656 real earthquake records. It is demonstrated that the mean period (Tm) of the ground-motion together with salient structural parameters such as building aspect ratio (λ), design force reduction factor (q) and panel subdivision (β) influence strongly the variation of base shear, storey shears and acceleration demands. Besides, robust regression models are used to assess and quantify the distribution of force and acceleration demands on CLT buildings. Finally, practical expressions for the estimation of base shears, inter-storey shears and peak floor accelerations are offered.

Journal article

Fieber A, Gardner L, Macorini L, 2019, Design of structural steel members by advanced inelastic analysis with strain limits, Engineering Structures, Vol: 199, Pages: 1-21, ISSN: 0141-0296

Structural steel design is traditionally a two step process: first, the internal forces and moments in the structure are determined from a structural analysis. Then, a series of design checks are carried out to assess the strength and stability of individual members. The structural analysis is typically performed using beam finite elements, which are usually not able to capture local buckling explicitly. Instead, the assessment of local buckling and rotation capacity is made through the concept of cross-section classification, which places class-specific restrictions on the analysis type (i.e. plastic or elastic) and defines the cross-section resistance based on idealised stress distributions (e.g. the plastic, elastic or effective moment capacity in bending). This approach is however considered to be overly simplistic and creates artificial steps in the capacity predictions of structural members. A more consistent approach is proposed herein, whereby a second-order inelastic analysis of the structure or structural component is performed using beam finite elements, and strain limits are employed to mimic the effects of local buckling, control the spread of plasticity and ultimately define the structural resistance. The strain limits are obtained from the continuous strength method. It is shown that not only can local buckling be accurately represented in members experiencing uniform cross-sectional deformations along the length, but, by applying the strain limits to strains that are averaged over a defined characteristic length, the beneficial effects of local moment gradients can also be exploited. The proposed method is assessed against benchmark shell finite element results on isolated members subjected to bending, compression and combined loading. Compared to conventional steel design provisions and even to existing advanced design approaches utilising second-order elastic analysis, the proposed design approach provides consistently more accurate capacity predic

Journal article

Setiawan A, Vollum R, Macorini L, Izzuddin Bet al., 2019, Efficient 3D modelling of punching shear failure at slab-column connections by means of nonlinear joint elements, Engineering Structures, Vol: 197, Pages: 1-19, ISSN: 0141-0296

Failures of isolated slab-column connections can be classified as either flexural or punching. Flexural failure is typically preceded by large deformation, owing to flexural reinforcement yield, unlike punching failure which occurs suddenly with little if any warning. This paper proposes a novel numerical strategy for modelling punching failure in which nonlinear joint elements are combined with nonlinear reinforced concrete (RC) shell elements. The joint elements are employed to model punching failure which limits force transfer from slabs to supporting columns. The shear resistance of individual joint elements is calculated using the critical shear crack theory (CSCT) which relates shear resistance to slab rotation. Unlike other similar models reported in the literature, the joint strength is continually updated throughout the analysis as the slab rotation changes. The approach is presented for slabs without shear reinforcement but could be easily extended to include shear reinforcement. The adequacy of the proposed methodology is verified using experimental test data from isolated internal RC slab-column connections tested to failure under various loading arrangements and slab edge boundary conditions. Comparisons are also made with the predictions of nonlinear finite element analysis using 3-D solid elements, where the proposed methodology is shown to compare favourably whilst requiring significantly less computation time. Additionally, the proposed methodology enables simple calculation of the relative contributions of flexure, torsion and eccentric shear to moment transfer between slab and column. This information is pertinent to the development of improved codified design methods for calculating the critical design shear stress at eccentrically loaded columns.

Journal article

Chisari C, Macorini L, Izzuddin B, 2019, Macroscale model calibration for seismic assessment of brick/block masonry structures, 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (CompDyn2019), Publisher: Institute of Structural Analysis and Antiseismic Research, Pages: 1356-1367

The accurate prediction of the response of masonry structures under seismic loading is one of the most challenging problems in structural engineering. Detailed heterogeneous models at the meso-or microscale, explicitly allow for the specific bond and, if equipped with accurate ma-terial models for the individual constituents, generally provide realistic response predictions even under extreme loading conditions, including earthquake loading. However, detailed meso-or microscale models are very computationally demanding and not suitable for practical design and assessment. In this respect, more general continuum representations utilising the finite element approach with continuum elements and specific macroscale constitutive relationships for masonry assumedas a homogeneous material represent more efficient but still accurate alternatives. In this research, the latter macroscale strategy is used to model brick/block ma-sonry components structures, where a standard damage-plasticity formulation for concrete-like materials is employed to represent material nonlinearity in the masonry. The adopted material model describes the softening behaviour in tension and compression as well as the strength and stiffness degradation under cyclic loading. An effective procedure for the calibration of the macroscale model parameters is presented and then used in a numerical example. The results achieved using the calibrated macroscale model are compared against the results of simula-tions where masonry is modelled by a more detailed mesoscale strategy. This enables a critical appraisal of the ability of elasto-plastic macroscale nonlinear representations of masonry mod-elled as an isotropic homogenised continuum to represent the response of masonry components under in-plane and out-of-plane earthquake loading.

Conference paper

Tubaldi E, Macorini L, Izzuddin B, 2019, Identification of critical mechanical parameters for advanced analysis of masonry arch bridges, Structure and Infrastructure Engineering, Vol: 16, Pages: 328-345, ISSN: 1573-2479

The response up to collapse of masonry arch bridges is very complex and affected by many uncertainties. In general, accurate response predictions can be achieved using sophisticated numerical descriptions, requiring a significant number of parameters that need to be properly characterised. This study focuses on the sensitivity of the behaviour of masonry arch bridges with respect to a wide range of mechanical parameters considered within a detailed modelling approach. The aim is to investigate the effect of constitutive parameters variations on the stiffness and ultimate load capacity under vertical loading. First, advanced numerical models of masonry arches and of a masonry arch bridge are developed, where a mesoscale approach describes the actual texture of masonry. Subsequently, a surrogate kriging metamodel is constructed to replace the accurate but computationally expensive numerical descriptions, and global sensitivity analysis is performed to identify the mechanical parameters affecting the most the stiffness and load capacity. Uncertainty propagation is then performed on the surrogate models to estimate the probabilistic distribution of the response parameters of interest. The results provide useful information for risk assessment and management purposes, and shed light on the parameters that control the bridge behaviour and require an accurate characterisation in terms of uncertainty.

Journal article

Fieber A, Gardner L, Macorini L, 2019, Formulae for determining elastic local buckling half-wavelengths of structural steel cross-sections, Journal of Constructional Steel Research, Vol: 159, Pages: 493-506, ISSN: 0143-974X

Formulae for determining elastic local buckling half-wavelengths of structural steel I-sections and box sections under compression, bending and combined loading are presented. Knowledge of local buckling half-wavelengths is useful for the direct definition of geometric imperfections in analytical and numerical models, as well as in a recently developed strain-based advanced analysis and design approach (Gardner et al., 2019a, 2019b). The underlying concept is that the cross-section local buckling response is bound by the theoretical behaviour of the isolated cross-section plates with simply-supported and fixed boundary conditions along their adjoined edges. At the isolated plate level, expressions for the half-wavelength buckling coefficient k Lb , which defines the local buckling half-wavelength of a plate as a multiple of its width b, taking into account the effects of the boundary conditions and applied loading, have been developed based on the results of finite strip analysis. At the cross-sectional level, element interaction is accounted for through an interaction coefficient ζ that ranges between 0 and 1, corresponding to the upper (simply-supported) and lower (fixed) bound half-wavelength envelopes of the isolated cross-section plates. The predicted half-wavelengths have been compared against numerical values obtained from finite strip analyses performed on a range of standard European and American hot-rolled I-sections and square/rectangular hollow sections (SHS/RHS), as well as additional welded profiles. The proposed approach is shown to predict the cross-section local buckling half-wavelengths consistently to within 10% of the numerical results.

Journal article

Demirci C, Malaga Chuquitaype C, Macorini L, 2019, Seismic demands in multi-storey Cross-Laminated Timber (CLT) structures, SECED 2019, Earthquake Risk and Engineering Towards a Resilient World

Conference paper

Setiawan A, Vollum RL, Macorini L, 2019, Numerical and analytical investigation of internal slab-column connections subject to cyclic loading, Engineering Structures, Vol: 184, Pages: 535-554, ISSN: 0141-0296

Properly designed flat slab to column connections can perform satisfactorily under seismic loading. Satisfactory performance is dependent on slab column connections being able to withstand the imposed drift while continuing to resist the imposed gravity loads. Particularly at risk are pre 1970’s flat slab to column connections without integrity reinforcement passing through the column. Current design provisions for punching shear under seismic loading are largely empirical and based on laboratory tests of thin slabs not representative of practice. This paper uses nonlinear finite element analysis (NLFEA) with ATENA and the Critical Shear Crack Theory (CSCT) to investigate the behaviour of internal slab-column connections without shear reinforcement subject to seismic loading. NLFEA is used to investigate cyclic degradation which reduces connection stiffness, unbalanced moment capacity, and ductility. As observed experimentally, cyclic degradation in the NLFEA is shown to be associated with accumulation of plastic strain in the flexural reinforcement bars which hinders concrete crack closure. Although the NLFEA produces reasonable strength and ductility predictions, it is unable to replicate the pinching effect. It is also too complex and time consuming to serve as a practical design tool. Therefore, a simple analytical design method is proposed which is based on the CSCT. The strength and limiting drift predictions of the proposed method are shown to mainly depend on slab depth (size effect) and flexural reinforcement ratio which is not reflected in available empirically-based models which appear to overestimate the drift capacity of slab-column connections with dimensions representative of practice.

Journal article

Gardner L, Yun X, Fieber A, Macorini Let al., 2019, Steel design by advanced analysis: material modeling and strain limits, Engineering, Vol: 5, Pages: 243-249, ISSN: 2095-8099

Structural analysis of steel frames is typically performed using beam elements. Since these elements are unable to explicitly capture the local buckling behavior of steel cross-sections, traditional steel design specifications use the concept of cross-section classification to determine the extent to which the strength and deformation capacity of a cross-section are affected by local buckling. The use of plastic design methods are restricted to Class 1 cross-sections, which possess sufficient rotation capacity for plastic hinges to develop and a collapse mechanism to form. Local buckling prevents the development of plastic hinges with such rotation capacity for cross-sections of higher classes and, unless computationally demanding shell elements are used, elastic analysis is required. However, this article demonstrates that local buckling can be mimicked effectively in beam elements by incorporating the continuous strength method (CSM) strain limits into the analysis. Furthermore, by performing an advanced analysis that accounts for both geometric and material nonlinearities, no additional design checks are required. The positive influence of the strain hardening observed in stocky cross-sections can also be harnessed, provided a suitably accurate stress–strain relationship is adopted; a quad-linear material model for hot-rolled steels is described for this purpose. The CSM strain limits allow cross-sections of all slenderness to be analyzed in a consistent advanced analysis framework and to benefit from the appropriate level of load redistribution. The proposed approach is applied herein to individual members, continuous beams, and frames, and is shown to bring significant benefits in terms of accuracy and consistency over current steel design specifications.

Journal article

Gardner L, Fieber A, Macorini L, 2019, Formulae for calculating elastic local buckling stresses of full structural cross-sections, Structures, Vol: 17, Pages: 2-20, ISSN: 2352-0124

Formulae for determining the full cross-section elastic local buckling stress of structural steel profiles under a comprehensive range of loading conditions, accounting for the interaction between the individual plate elements, are presented. Element interaction, characterised by the development of rotational restraint along the longitudinal edges of adjoined plates, is shown to occur in cross-sections comprising individual plates with different local buckling stresses, but also in cross-sections where the isolated plates have the same local buckling stress but different local buckling half-wavelengths. The developed expressions account for element interaction through an interaction coefficient ζ that ranges between 0 and 1 and are bound by the theoretical limits of the local buckling stress of the isolated critical plates with simply-supported and fixed boundary conditions along the adjoined edges. A range of standard European and American hot-rolled structural steel profiles, including I-sections, square and rectangular hollow sections, channel sections, tee sections and angle sections, as well as additional welded profiles, are considered. The analytical formulae are calibrated against results derived numerically using the finite strip method. For the range of analysed sections, the elastic local buckling stress is typically predicted to within 5% of the numerical value, whereas when element interaction is ignored and the plates are considered in isolation with simply-supported boundary conditions along the adjoined edges, as is customary in current structural design specifications, the local buckling stress of common structural profiles may be under-estimated by as much as 50%. The derived formulae may be adopted as a convenient alternative to numerical methods in advanced structural design calculations (e.g. using the direct strength method or continuous strength method) and although the focus of the study is on structural steel sections, the functions are

Journal article

Minga E, Macorini L, Izzuddin BA, Caliò Iet al., 2019, Macromodeling, Numerical Modeling of Masonry and Historical Structures: From Theory to Application, Pages: 263-294, ISBN: 9780081024409

This chapter discusses modeling strategies for unreinforced masonry (URM) components and structures, where masonry is represented at the macroscale. In general, macromodeling approaches are based on the assumption that masonry behaves as a homogeneous material, which can be represented by phenomenological models. Two main alternative representations can be identified within this approach: the modeling with macroelements and the macroscopic material description. Previous research in this field is presented and discussed, focusing on the characteristics of some significant macroscale masonry models reported in the literature. Finally, an enhanced 3D macroelement approach for masonry is presented. It enables the efficient, yet accurate, finite element representation of masonry components under cyclic loading. A macroscopic description is considered, where macroelements consisting of homogeneous deformable blocks interacting through cohesive interfaces are used to represent large portions of masonry walls enhancing computational efficiency. Enriched kinematic characteristics for the homogeneous blocks and a detailed material description for the nonlinear interfaces connecting adjacent elements allows for an accurate representation of complex failure modes and realistic cracking patterns in masonry walls subjected to in-plane and out-of-plane cyclic loading. The accuracy of the proposed macroelement strategy is shown in numerical examples, including comparisons against results of experimental tests of URM wall components under in-plane and out-of-plane cyclic loading conditions.

Book chapter

Gardner L, Fieber A, Macorini L, 2019, Structural steel design by advanced analysis with strain limits, International Colloquia on Stability and Ductility of Steel Structures (SDSS), Publisher: ROUTLEDGE, Pages: 3-15

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00588312&limit=30&person=true