Imperial College London

DrLucyOkell

Faculty of MedicineSchool of Public Health

Senior Lecturer & Royal Society Dorothy Hodgkin Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 3265l.okell Website

 
 
//

Location

 

G24Medical SchoolSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

98 results found

Okell L, Brazeau NF, Verity R, Jenks S, Fu H, Whittaker C, Winskill P, Dorigatti I, Walker P, Riley S, Schnekenberg RP, Hoeltgebaum H, Mellan TA, Mishra S, Unwin H, Watson O, Cucunuba Z, Baguelin M, Whittles L, Bhatt S, Ghani A, Ferguson Net al., 2022, Estimating the COVID-19 infection fatality ratio accounting for seroreversion using statistical modelling, Communications Medicine, Vol: 2, Pages: 1-13, ISSN: 2730-664X

Background: The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the COVID-19 pandemic. The age-specific IFR can be quantified using antibody surveys to estimate total infections, but requires consideration of delay-distributions from time from infection to seroconversion, time to death, and time to seroreversion (i.e. antibody waning) alongside serologic test sensitivity and specificity. Previous IFR estimates have not fully propagated uncertainty or accounted for these potential biases, particularly seroreversion. Methods: We built a Bayesian statistical model that incorporates these factors and applied this model to simulated data and 10 serologic studies from different countries. Results: We demonstrate that seroreversion becomes a crucial factor as time accrues but is less important during first-wave, short-term dynamics. We additionally show that disaggregating surveys by regions with higher versus lower disease burden can inform serologic test specificity estimates. The overall IFR in each setting was estimated at 0.49 -2.53%.Conclusion: We developed a robust statistical framework to account for full uncertainties in the parameters determining IFR. We provide code for others to apply these methods to further datasets and future epidemics.

Journal article

de Cola MA, Sawadogo B, Richardson S, Ibinaiye T, Traore A, Compaore CS, Oguoma C, Oresanya O, Tougri G, Rassi C, Roca-Feltrer A, Walker P, Okell LCet al., 2022, Impact of seasonal malaria chemoprevention on prevalence of malaria infection in malaria indicator surveys in Burkina Faso and Nigeria, BMJ Global Health, Vol: 7, Pages: 1-11, ISSN: 2059-7908

Background In 2012, the WHO issued a policy recommendation for the use of seasonal malaria chemoprevention (SMC) to children 3–59 months in areas of highly seasonal malaria transmission. Clinical trials have found SMC to prevent around 75% of clinical malaria. Impact under routine programmatic conditions has been assessed during research studies but there is a need to identify sustainable methods to monitor impact using routinely collected data.Methods Data from Demographic Health Surveys were merged with rainfall, geographical and programme data in Burkina Faso (2010, 2014, 2017) and Nigeria (2010, 2015, 2018) to assess impact of SMC. We conducted mixed-effects logistic regression to predict presence of malaria infection in children aged 6–59 months (rapid diagnostic test (RDT) and microscopy, separately).Results We found strong evidence that SMC administration decreases odds of malaria measured by RDT during SMC programmes, after controlling for seasonal factors, age, sex, net use and other variables (Burkina Faso OR 0.28, 95% CI 0.21 to 0.37, p<0.001; Nigeria OR 0.40, 95% CI 0.30 to 0.55, p<0.001). The odds of malaria were lower up to 2 months post-SMC in Burkina Faso (1-month post-SMC: OR 0.29, 95% CI 0.12 to 0.72, p=0.01; 2 months post-SMC: OR: 0.33, 95% CI 0.17 to 0.64, p<0.001). The odds of malaria were lower up to 1 month post-SMC in Nigeria but was not statistically significant (1-month post-SMC 0.49, 95% CI 0.23 to 1.05, p=0.07). A similar but weaker effect was seen for microscopy (Burkina Faso OR 0.38, 95% CI 0.29 to 0.52, p<0.001; Nigeria OR 0.53, 95% CI 0.38 to 0.76, p<0.001).Conclusions Impact of SMC can be detected in reduced prevalence of malaria from data collected through household surveys if conducted during SMC administration or within 2 months afterwards. Such evidence could contribute to broader evaluation of impact of SMC programmes.

Journal article

Okell LC, Kwambai TK, Dhabangi A, Khairallah C, Nkosi-Gondwe T, Opoka R, Mousa A, Kühl M-J, Lucas TCD, Idro R, Weiss DJ, Cairns M, ter Kuile FO, Phiri K, Robberstad B, Mori ATet al., 2022, Projected health impact of post-discharge malaria chemoprevention among children with severe malarial anaemia in Africa

<jats:title>Abstract</jats:title><jats:p>Children recovering from severe malarial anaemia (SMA) remain at high risk of readmission and death after discharge from hospital. However, a recent trial found that post-discharge malaria chemoprevention (PDMC) reduces this risk. We developed a mathematical model describing the daily incidence of uncomplicated and severe malaria requiring readmission among 0-5 year-old children after hospitalised SMA. We fitted the model to a multicentre clinical PDMC trial using Bayesian methods. We then modelled the potential impact of PDMC across malaria-endemic African countries. In the 19 highest-burden countries, we estimate that only 2-5 children need to be given PDMC to prevent one hospitalised malaria episode, and less than 100 to prevent one death. If all hospitalised SMA cases access PDMC, 37,000 (range 16,000-84,000) malaria-associated readmissions could be prevented annually, depending on access to hospital care. We estimate that recurrent SMA post-discharge constitutes 18-29% of all SMA episodes in higher transmission settings.</jats:p>

Journal article

Challenger J, Foo C, Wu Y, Yan A, Marjaneh MM, Liew F, Thwaites R, Okell L, Cunnington Aet al., 2022, Modelling upper respiratory viral load dynamics of SARS-CoV-2, BMC Medicine, Vol: 20, ISSN: 1741-7015

Relationships between viral load, severity of illness, and transmissibility of virus, are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response, and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with control of viral load. Neutralizing antibody correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralizing antibody. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.

Journal article

Bhatia S, Imai N, Cuomo-Dannenburg G, Baguelin M, Boonyasiri A, Cori A, Cucunubá Z, Dorigatti I, FitzJohn R, Fu H, Gaythorpe K, Ghani A, Hamlet A, Hinsley W, Laydon D, Nedjati-Gilani G, Okell L, Riley S, Thompson H, van Elsland S, Volz E, Wang H, Wang Y, Whittaker C, Xi X, Donnelly CA, Ferguson NMet al., 2021, Estimating the number of undetected COVID-19 cases among travellers from mainland China, Wellcome Open Research, Vol: 5, Pages: 143-143

<ns4:p><ns4:bold>Background:</ns4:bold> As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide.</ns4:p><ns4:p> <ns4:bold>Methods: </ns4:bold>We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries.</ns4:p><ns4:p> <ns4:bold>Results: </ns4:bold>Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries.</ns4:p><ns4:p> <ns4:bold>Conclusions: </ns4:bold>Our analysis shows that a large number of COVID-19 cases remain undetected across the world.<ns4:bold> </ns4:bold>These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.</ns4:p>

Journal article

Edun O, Shenderovich Y, Zhou S, Toska E, Okell L, Eaton JW, Cluver Let al., 2021, Predictors and consequences of HIV status disclosure to adolescents living with HIV in Eastern Cape, South Africa

<jats:title>Abstract</jats:title><jats:sec><jats:title>Introduction</jats:title><jats:p>The World Health Organization recommends full disclosure of HIV-positive status to adolescents who acquired HIV perinatally (APHIV) by age 12. However, even among adolescents (aged 10-19) already on antiretroviral therapy (ART), disclosure rates are low. Caregivers often report the child being too young and fear of disclosure worsening adolescents’ mental health as reasons for non-disclosure. Evidence is limited about predictors of disclosure and its association with adherence, viral suppression, and mental health outcomes among adolescents in sub-Saharan Africa.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Analyses included three rounds (2014-2018) of data collected among a closed cohort of adolescents living with HIV in Eastern Cape, South Africa. We used logistic regression with respondent random-effects to identify factors associated with disclosure, and assess differences in ART adherence, viral suppression, and mental health symptoms between adolescents by disclosure status. We also explored differences in the change in mental health symptoms and ART adherence between study rounds and disclosure groups with logistic regression.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>813 APHIV were interviewed at baseline, of whom 769 (94.6%) and 729 (89.7%) were interviewed at the second and third rounds, respectively. The proportion aware of their HIV-positive status increased from 63.1% at the first round to 85.5% by the third round. Older age (adjusted odds ratio (aOR): 1.24; 1.07 – 1.43) and living in an urban location (aOR: 2.76; 1.67 – 4.45) were associated with disclosure between interviews. There was no association between awareness of HIV-positive status and ART adherence, viral suppression, or mental hea

Journal article

Okell L, Whittaker C, Ghani A, Slater H, Nash R, Bousema T, Drakeley Cet al., 2021, Global patterns of submicroscopic Plasmodium falciparum malaria infection: insights from a systematic review and meta-analysis of population surveys, The Lancet Microbe, Vol: 2, Pages: e366-e374, ISSN: 2666-5247

Background: Adoption of molecular techniques to detect Plasmodium falciparum infection has revealed many previously undetected (by microscopy) yet transmissible low-density infections. The proportion of these infections is typically highest in low transmission settings, but drivers of submicroscopic infection remain unclear. Here, we update a previously conducted systematic review of asexual P. falciparum prevalence by microscopy and polymerase chain reaction (PCR) in the same population. We conduct a meta-analysis to explore potential drivers of submicroscopic infection and identify the locations where submicroscopic infections are most common. Methods: PubMed and Web of Science databases were searched up to 11th October 2020 for cross-sectional studies reporting data on asexual P.falciparum prevalence by both microscopy and PCR. Surveys of pregnant women, where participants had been chosen based on symptoms/treatment or that did not involve a population from a defined location were excluded. Both the number of individuals tested and positive by microscopy and PCR for P. falciparum infection were extracted from each reference. Bayesian regression modelling was used to explore determinants of the size of the submicroscopic reservoir including geography, seasonality, age, methodology and current/historical patterns of transmission.Findings: A total of 166 references containing 551 cross-sectional survey microscopy/PCR prevalence pairs were included. Our results highlight that submicroscopic infections predominate in low transmission settings across all settings, but also reveal marked geographical variation, with the proportion of infections that are submicroscopic being highest in South American surveys and lowest in West African studies. Whilst current transmission levels partly explain these results, we find that historical transmission intensity also represents a crucial determinant of the size of the submicroscopic reservoir, as does the demographic structure of

Journal article

Knock ES, Whittles LK, Lees JA, Perez-Guzman PN, Verity R, FitzJohn RG, Gaythorpe KAM, Imai N, Hinsley W, Okell LC, Rosello A, Kantas N, Walters CE, Bhatia S, Watson OJ, Whittaker C, Cattarino L, Boonyasiri A, Djaafara BA, Fraser K, Fu H, Wang H, Xi X, Donnelly CA, Jauneikaite E, Laydon DJ, White PJ, Ghani AC, Ferguson NM, Cori A, Baguelin Met al., 2021, Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England, Science Translational Medicine, Vol: 13, Pages: 1-12, ISSN: 1946-6234

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modelling framework allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rteff ) below 1 consistently; if introduced one week earlier it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 (95% credible interval [95%CrI]: 15,900-38,400). The infection fatality ratio decreased from 1.00% (95%CrI: 0.85%-1.21%) to 0.79% (95%CrI: 0.63%-0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95%CrI: 14.7%-35.2%) than those residing in the community (7.9%, 95%CrI: 5.9%-10.3%). On 2nd December 2020 England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95%CrI: 5.4%-10.2%) and 22.3% (95%CrI: 19.4%-25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow non-pharmaceutical interventions to be lifted without a resurgence of transmission.

Journal article

Winskill P, Mousa A, Oresanya O, Counihan H, Okell L, Walker Pet al., 2021, Does integrated community case management (iCCM) target health inequities and treatment delays? Evidence from an analysis of Demographic and Health Surveys data from 21 countries in the period 2010 to 2018, Journal of Global Health, Vol: 11, Pages: 1-10, ISSN: 2047-2978

BackgroundIntegrated community case management (iCCM) is a programme that can, via community health workers (CHWs), increase access to timely and essential treatments for children. As well as improving treatment coverage, iCCM has an additional equity-focus with the aim of targetingunderserved populations. To assess the success of iCCM programmes it is important that we understand the contribution they are making to equitable health coverage.MethodsWe analysed demographic and health survey data from 21 countries over 9 years to assess evidence and evaluate iCCM programmes. We summarise the contribution CHWs are making relative to other healthcare provider groups and what treatment combinations CHWs are commonly prescribing. We assessed the ability of CHWs to target treatment delays and health inequities by evaluating time to treatment following fever onset and relationships between CHWs and wealth, rurality and remoteness.ResultsThere was good evidence that CHWs are being successfully targeted to improve inequities in healthcare coverage. There is a larger contribution of CHWs in areas with higher poverty, rurality and remoteness. In six surveys CHWs were associated with significantly shorter average timebetween fever onset and advice or treatment seeking, whilst in one they were associated with significantly longer times. In areas with active CHW programmes, the contribution of CHWs relative to other healthcare provider groups varied between 11% to 45% of treatment visits. The distribution of types of treatment provided by CHWs was also very variable between countries.ConclusionsThe success of an iCCM programme depends not only on increasing treatment coverage but addressing inequities in access to timely healthcare. Whilst much work is still needed to attain universal healthcare targets, and despite incomplete data, there is evidence that iCCM is successfully addressing treatment delays and targeting underserved populations.

Journal article

Ward H, Atchison C, Whitaker M, Ainslie KEC, Elliott J, Okell L, Redd R, Ashby D, Donnelly C, Barclay W, Darzi A, Cooke G, Riley S, Elliott Pet al., 2021, SARS-CoV-2 antibody prevalence in England following the first peak of the pandemic., Nature Communications, Vol: 12, Pages: 1-8, ISSN: 2041-1723

England has experienced a large outbreak of SARS-CoV-2, disproportionately affecting people from disadvantaged and ethnic minority communities. It is unclear how much of this excess is due to differences in exposure associated with structural inequalities. Here we report from the REal-time Assessment of Community Transmission-2 (REACT-2) national study of over 100,000 people. After adjusting for test characteristics and re-weighting to the population, overall antibody prevalence is 6.0% (95% CI: 5.8-6.1). An estimated 3.4 million people had developed antibodies to SARS-CoV-2 by mid-July 2020. Prevalence is two- to three-fold higher among health and care workers compared with non-essential workers, and in people of Black or South Asian than white ethnicity, while age- and sex-specific infection fatality ratios are similar across ethnicities. Our results indicate that higher hospitalisation and mortality from COVID-19 in minority ethnic groups may reflect higher rates of infection rather than differential experience of disease or care.

Journal article

Verity R, Okell L, Dorigatti I, Winskill P, Whittaker C, Walker P, Donnelly C, Ferguson N, Ghani Aet al., 2021, COVID-19 and the difficulty of inferring epidemiological parameters from clinical data Reply, LANCET INFECTIOUS DISEASES, Vol: 21, Pages: 28-28, ISSN: 1473-3099

Journal article

Fu H, Wang H, Xi X, Boonyasiri A, Wang Y, Hinsley W, Fraser KJ, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewé T, Dighe A, Winskill P, van Elsland SL, Ainslie KEC, Baguelin M, Bhatt S, Boyd O, Brazeau NF, Cattarino L, Charles G, Coupland H, Cucunubá ZM, Cuomo-Dannenburg G, Donnelly CA, Dorigatti I, Eales OD, Fitzjohn RG, Flaxman S, Gaythorpe KAM, Ghani AC, Green WD, Hamlet A, Hauck K, Haw DJ, Jeffrey B, Laydon DJ, Lees JA, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag KV, Ragonnet-Cronin M, Riley S, Schmit N, Thompson HA, Unwin HJT, Verity R, Vollmer MAC, Volz E, Walker PGT, Walters CE, Waston OJ, Whittaker C, Whittles LK, Imai N, Bhatia S, Ferguson NMet al., 2021, A database for the epidemic trends and control measures during the first wave of COVID-19 in mainland China, International Journal of Infectious Diseases, Vol: 102, Pages: 463-471, ISSN: 1201-9712

Objectives: This data collation effort aims to provide a comprehensive database to describe the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19)across main provinces in China. Methods: From mid-January to March 2020, we extracted publicly available data on the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted a descriptive analysis of the epidemics in the six most-affected provinces. Results: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends were different across provinces. Compared to Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as local transmission of COVID-19 declined, switching the focus of measures to testing and quarantine of inbound travellers could help to sustain the control of the epidemic. Conclusions: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database with these indicators and information on control measures provides useful source for exploring further research and policy planning for response to the COVID-19 epidemic.

Journal article

Witmer K, Dahalan F, Delves M, Yahiya S, Watson O, Straschil U, Chiwcharoen D, Sorboon B, Pukrittayakamee S, Pearson R, Howick V, Lawniczak M, White N, Dondorp A, Okell L, Chotivanich K, Ruecker A, Baum Jet al., 2021, Transmission of artemisinin-resistant malaria parasites to mosquitoes under antimalarial drug pressure, Antimicrobial Agents and Chemotherapy, Vol: 65, Pages: 1-17, ISSN: 0066-4804

Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. Whilst resistance manifests as delayed parasite clearance in patients the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilise sexual male gametocytes. Whether resistant parasites overcome this sterilising effect has not, however, been fully tested. Here, we analysed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in Kelch13 (PfK13var). As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, whilst sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favour acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favoured resistance transmission under ACT coverage could have profound implications for the spread of multidrug resistant malaria beyond Southeast Asia.

Journal article

Mumtaz R, Okell LC, Challenger J, 2020, Asymptomatic recrudescence after artemether-lumefantrine treatment for uncomplicated falciparum malaria: a systematic review and meta-analysis, Malaria Journal, Vol: 19, ISSN: 1475-2875

BackgroundIn clinical trials of therapy for uncomplicated Plasmodium falciparum, there are usually some patients who fail treatment even in the absence of drug resistance. Treatment failures, which can be due to recrudescence or re-infection, are categorized as ‘clinical’ or ‘parasitological’ failures, the former indicating that symptoms have returned. Asymptomatic recrudescence has public health implications for continued malaria transmission and may be important for the spread of drug-resistant malaria. As the number of recrudescences in an individual trial is often low, it is difficult to assess how commonplace asymptomatic recrudescence is, and with what factors it is associated.MethodsA systematic literature review was carried out on clinical trials of artemether-lumefantrine (AL) in patients seeking treatment for symptomatic uncomplicated falciparum malaria, and information on symptoms during treatment failure was recorded. Only treatment failures examined by polymerase chain reaction (PCR) were included, so as to exclude re-infections. A multivariable Bayesian regression model was used to explore factors potentially explaining the proportion of recrudescent infections which are symptomatic across the trials included in the study.ResultsAcross 60 published trials, including 9137 malaria patients, 37.8% [95% CIs (26.6–49.4%)] of recrudescences were symptomatic. A positive association was found between transmission intensity and the observed proportion of recrudescences that were asymptomatic. Symptoms were more likely to return in trials that only enrolled children aged < 72 months [odds ratio = 1.62, 95% CIs (1.01, 2.59)]. However, 84 studies had to be excluded from this analysis, as recrudescences were not specified as symptomatic or asymptomatic.ConclusionsAL, the most widely used treatment for uncomplicated P. falciparum in Africa, remains a highly efficacious drug in most endemic countries. Howev

Journal article

Unwin H, Mishra S, Bradley V, Gandy A, Mellan T, Coupland H, Ish-Horowicz J, Vollmer M, Whittaker C, Filippi S, Xi X, Monod M, Ratmann O, Hutchinson M, Valka F, Zhu H, Hawryluk I, Milton P, Ainslie K, Baguelin M, Boonyasiri A, Brazeau N, Cattarino L, Cucunuba Z, Cuomo-Dannenburg G, Dorigatti I, Eales O, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Siveroni I, Thompson H, Walker P, Walters C, Watson O, Whittles L, Ghani A, Ferguson N, Riley S, Donnelly C, Bhatt S, Flaxman Set al., 2020, State-level tracking of COVID-19 in the United States, Nature Communications, Vol: 11, Pages: 1-9, ISSN: 2041-1723

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available deathdata within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on therate of transmission of SARS-CoV-2. We estimate thatRtwas only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.

Journal article

Grassly NC, Pons-Salort M, Parker EPK, White PJ, Ferguson NM, Imperial College COVID-19 Response Teamet al., 2020, Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study, Lancet Infectious Diseases, Vol: 20, Pages: 1381-1389, ISSN: 1473-3099

BACKGROUND: WHO has called for increased testing in response to the COVID-19 pandemic, but countries have taken different approaches and the effectiveness of alternative strategies is unknown. We aimed to investigate the potential impact of different testing and isolation strategies on transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: We developed a mathematical model of SARS-CoV-2 transmission based on infectiousness and PCR test sensitivity over time since infection. We estimated the reduction in the effective reproduction number (R) achieved by testing and isolating symptomatic individuals, regular screening of high-risk groups irrespective of symptoms, and quarantine of contacts of laboratory-confirmed cases identified through test-and-trace protocols. The expected effectiveness of different testing strategies was defined as the percentage reduction in R. We reviewed data on the performance of antibody tests reported by the Foundation for Innovative New Diagnostics and examined their implications for the use of so-called immunity passports. FINDINGS: If all individuals with symptoms compatible with COVID-19 self-isolated and self-isolation was 100% effective in reducing onwards transmission, self-isolation of symptomatic individuals would result in a reduction in R of 47% (95% uncertainty interval [UI] 32-55). PCR testing to identify SARS-CoV-2 infection soon after symptom onset could reduce the number of individuals needing to self-isolate, but would also reduce the effectiveness of self-isolation (around 10% would be false negatives). Weekly screening of health-care workers and other high-risk groups irrespective of symptoms by use of PCR testing is estimated to reduce their contribution to SARS-CoV-2 transmission by 23% (95% UI 16-40), on top of reductions achieved by self-isolation following symptoms, assuming results are available at 24 h. The effectiveness of test and trace depends strongly on coverage and the timelines

Journal article

Thompson H, Imai N, Dighe A, Ainslie K, Baguelin M, Bhatia S, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Cooper L, Coupland H, Cucunuba Z, Cuomo-Dannenburg G, Djaafara B, Dorigatti I, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Hallett T, Hamlet A, Haw D, Hayes S, Hinsley W, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Mousa A, Nedjati-Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Donnelly C, Ferguson Net al., 2020, SARS-CoV-2 infection prevalence on repatriation flights from Wuhan City, China, Journal of Travel Medicine, Vol: 27, Pages: 1-3, ISSN: 1195-1982

We estimated SARS-CoV-2 infection prevalence in cohorts of repatriated citizens from Wuhan to be 0.44% (95% CI: 0.19%–1.03%). Although not representative of the wider population we believe these estimates are helpful in providing a conservative estimate of infection prevalence in Wuhan City, China, in the absence of large-scale population testing early in the epidemic.

Journal article

Okell LC, Verity R, Katzourakis A, Volz EM, Watson OJ, Mishra S, Walker P, Whittaker C, Donnelly CA, Riley S, Ghani AC, Gandy A, Flaxman S, Ferguson NM, Bhatt Set al., 2020, Host or pathogen-related factors in COVID-19 severity? Reply, LANCET, Vol: 396, Pages: 1397-1397, ISSN: 0140-6736

Journal article

Brazeau N, Verity R, Jenks S, Fu H, Whittaker C, Winskill P, Dorigatti I, Walker P, Riley S, Schnekenberg RP, Heltgebaum H, Mellan T, Mishra S, Unwin H, Watson O, Cucunuba Perez Z, Baguelin M, Whittles L, Bhatt S, Ghani A, Ferguson N, Okell Let al., 2020, Report 34: COVID-19 infection fatality ratio: estimates from seroprevalence

The infection fatality ratio (IFR) is a key statistic for estimating the burden of coronavirus disease 2019 (COVID-19) and has been continuously debated throughout the current pandemic. Previous estimates have relied on data early in the epidemic, or have not fully accounted for uncertainty in serological test characteristics and delays from onset of infection to seroconversion, death, and antibody waning. After screening 175 studies, we identified 10 representative antibody surveys to obtain updated estimates of the IFR using a modelling framework that addresses the limitations listed above. We inferred serological test specificity from regional variation within serosurveys, which is critical for correctly estimating the cumulative proportion infected when seroprevalence is still low. We find that age-specific IFRs follow an approximately log-linear pattern, with the risk of death doubling approximately every eight years of age. Using these age-specific estimates, we estimate the overall IFR in a typical low-income country, with a population structure skewed towards younger individuals, to be 0.23% (0.14-0.42 95% prediction interval range). In contrast, in a typical high income country, with a greater concentration of elderly individuals, we estimate the overall IFR to be 1.15% (0.78-1.79 95% prediction interval range). We show that accounting for seroreversion, the waning of antibodies leading to a negative serological result, can slightly reduce the IFR among serosurveys conducted several months after the first wave of the outbreak, such as Italy. In contrast, uncertainty in test false positive rates combined with low seroprevalence in some surveys can reconcile apparently low crude fatality ratios with the IFR in other countries. Unbiased estimates of the IFR continue to be critical to policymakers to inform key response decisions. It will be important to continue to monitor the IFR as new treatments are introduced. The code for reproducing these results are av

Report

Mousa A, Al-Taiar A, Anstey NM, Badaut C, Barber BE, Bassat Q, Challenger J, Cunnington AJ, Datta D, Drakeley C, Ghani AC, Gordeuk VR, Grigg MJ, Hugo P, John CC, Mayor A, Migot-Nabias F, Opoka RO, Pasvol G, Rees C, Reyburn H, Riley EM, Shah BN, Sitoe A, Sutherland CJ, Thuma PE, Unger SA, Viwami F, Walther M, Whitty CJM, William T, Okell LCet al., 2020, The impact of delayed treatment of uncomplicated P. falciparum malaria on progression to severe malaria: a systematic review and a pooled multicentre individual-patient meta-analysis, PLoS Medicine, Vol: 17, Pages: 1-28, ISSN: 1549-1277

Background: Delay in receiving treatment for uncomplicated malaria is often reported to increase the risk of developing severe malaria, but access to treatment remains low in most high-burden areas. Understanding the contribution of treatment delay on progression to severe disease is critical to determine how quickly patients need to receive treatment and to quantify the impact of widely implemented treatment interventions, such as “test-and-treat” policies administered by community health workers. We conducted a pooled individual-participant meta-analysis to estimate the association between treatment delay and presenting with severe malaria.Methods and Findings: A search using Ovid MEDLINE and Embase was initially conducted to identify studies on severe P. falciparum malaria which included information on treatment delay, such as fever duration 12(inceptions to 22nd September 2017). Studies identified included five case-control and eight other observational clinical studies of severe and uncomplicated malaria cases. Risk of bias was assessed using the Newcastle–Ottawa scale and all studies were ranked as “Good”, scoring ≥7/10. Individual-patient data were pooled from thirteen studies of 3,989(94.1% aged <15 years)severe malaria patients and 5,780(79.6% aged <15 years)uncomplicated malaria cases in Benin, Malaysia, Mozambique, Tanzania, The Gambia, Uganda, Yemen and Zambia. Definitions of severe malaria were standardised across studies to compare treatment delay in patients with uncomplicated malaria and different severe malaria phenotypes using age-adjusted mixed-effects regression. The odds of any severe malaria phenotype were significantly higher in children with longer delays between initial symptoms and arrival at the health facility (OR=1.33, 95%CI:1.07-1.64 for a delay of >24 hours vs. ≤24 hours;p=0.009). Reported illness duration was a strong predictor of presenting with severe malarial anaemia (SMA) in children

Journal article

Ainslie K, Walters C, Fu H, Bhatia S, Wang H, Xi X, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland S, FitzJohn R, Gaythorpe K, Ghani A, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati-Gilani G, Okell L, Siveroni I, Thompson H, Unwin J, Verity R, Vollmer M, Walker P, Wang Y, Watson O, Whittaker C, Winskill P, Donnelly C, Ferguson N, Riley Set al., 2020, Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment, Wellcome Open Research, ISSN: 2398-502X

Background : The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods : Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results : Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

Journal article

Monod M, Blenkinsop A, Xi X, Herbert D, Bershan S, Tietze S, Bradley V, Chen Y, Coupland H, Filippi S, Ish-Horowicz J, McManus M, Mellan T, Gandy A, Hutchinson M, Unwin H, Vollmer M, Weber S, Zhu H, Bezancon A, Ferguson N, Mishra S, Flaxman S, Bhatt S, Ratmann O, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Green W, Hamlet A, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Walters C, Donnelly C, Okell L, Bhatia S, Brazeau N, Eales O, Haw D, Imai N, Jauneikaite E, Lees J, Mousa A, Olivera Mesa D, Skarp J, Whittles Let al., 2020, Report 32: Targeting interventions to age groups that sustain COVID-19 transmission in the United States, Pages: 1-32

Following ini􀀂al declines, in mid 2020, a resurgence in transmission of novel coronavirus disease (COVID-19) has occurred in the United States and parts of Europe. Despite the wide implementa􀀂on of non-pharmaceu􀀂cal inter-ven􀀂ons, it is s􀀂ll not known how they are impacted by changing contact pa􀀁erns, age and other demographics. As COVID-19 disease control becomes more localised, understanding the age demographics driving transmission and how these impact the loosening of interven􀀂ons such as school reopening is crucial. Considering dynamics for the United States, we analyse aggregated, age-specific mobility trends from more than 10 million individuals and link these mechanis􀀂cally to age-specific COVID-19 mortality data. In contrast to previous approaches, we link mobility to mortality via age specific contact pa􀀁erns and use this rich rela􀀂onship to reconstruct accurate trans-mission dynamics. Contrary to anecdotal evidence, we find li􀀁le support for age-shi􀀃s in contact and transmission dynamics over 􀀂me. We es􀀂mate that, un􀀂l August, 63.4% [60.9%-65.5%] of SARS-CoV-2 infec􀀂ons in the United States originated from adults aged 20-49, while 1.2% [0.8%-1.8%] originated from children aged 0-9. In areas with con􀀂nued, community-wide transmission, our transmission model predicts that re-opening kindergartens and el-ementary schools could facilitate spread and lead to considerable excess COVID-19 a􀀁ributable deaths over a 90-day period. These findings indicate that targe􀀂ng interven􀀂ons to adults aged 20-49 are an important con-sidera􀀂on in hal􀀂ng resurgent epidemics, and preven􀀂ng COVID-19-a􀀁ributable deaths when kindergartens and elementary schools reopen.

Journal article

van Elsland S, Watson O, Alhaffar M, Mehchy Z, Whittaker C, Akil Z, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Charles G, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Djaafara A, Donnelly C, Dorigatti I, Eales O, van Elsland S, Nascimento F, Fitzjohn R, Flaxman S, Forna A, Fu H, Gaythorpe K, Green W, Hamlet A, Hauck K, Haw D, Hayes S, Hinsley W, Imai N, Jeffrey B, Johnson R, Jorgensen D, Knock E, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Olivera Mesa D, Pons Salort M, Ragonnet-Cronin M, Siveroni I, Stopard I, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walters C, Wang H, Wang Y, Whittles L, Winskill P, Xi X, Ferguson N, Beals E, Walker P, Anonymous Authorset al., 2020, Report 31: Estimating the burden of COVID-19 in Damascus, Syria: an analysis of novel data sources to infer mortality under-ascertainment

The COVID-19 pandemic has resulted in substantial mortality worldwide. However, to date, countries in the Middle East and Africa have reported substantially lower mortality rates than in Europe and the Americas. One hypothesis is that these countries have been ‘spared’, but another is that deaths have been under-ascertained (deaths that have been unreported due to any number of reasons, for instance due to limited testing capacity). However, the scale of under-ascertainment is difficult to assess with currently available data. In this analysis, we estimate the potential under-ascertainment of COVID-19 mortality in Damascus, Syria, where all-cause mortality data has been reported between 25th July and 1st August. We fit a mathematical model of COVID-19 transmission to reported COVID-19 deaths in Damascus since the beginning of the pandemic and compare the model-predicted deaths to reported excess deaths. Exploring a range of different assumptions about under-ascertainment, we estimate that only 1.25% of deaths (sensitivity range 1% - 3%) due to COVID-19 are reported in Damascus. Accounting for under-ascertainment also corroborates local reports of exceeded hospital bed capacity. To validate the epidemic dynamics inferred, we leverage community-uploaded obituary certificates as an alternative data source, which confirms extensive mortality under-ascertainment in Damascus between July and August. This level of under-ascertainment suggests that Damascus is at a much later stage in its epidemic than suggested by surveillance reports, which have repo. We estimate that 4,340 (95% CI: 3,250 - 5,540) deaths due to COVID-19 in Damascus may have been missed as of 2nd September 2020. Given that Damascus is likely to have the most robust surveillance in Syria, these findings suggest that other regions of the country could have experienced similar or worse mortality rates due to COVID-19.

Report

Watson O, Okell L, Hellewell J, Slater H, Unwin H, Omedo I, Bejon P, Snow R, Noor A, Rockett K, Hubbart C, Joaniter N, Greenhouse B, Chang H-H, Ghani A, Verity Aet al., 2020, Evaluating the performance of malaria genetics for inferring changes in transmission intensity using transmission modelling, Molecular Biology and Evolution, Vol: 38, Pages: 274-289, ISSN: 0737-4038

Substantial progress has been made globally to control malaria, however there is a growing need for innovative new tools to ensure continued progress. One approach is to harness genetic sequencing and accompanying methodological approaches as have been used in the control of other infectious diseases. However, to utilise these methodologies for malaria we first need to extend the methods to capture the complex interactions between parasites, human and vector hosts, and environment, which all impact the level of genetic diversity and relatedness of malaria parasites. We develop an individual-based transmission model to simulate malaria parasite genetics parameterised using estimated relationships between complexity of infection and age from 5 regions in Uganda and Kenya. We predict that cotransmission and superinfection contribute equally to within-host parasite genetic diversity at 11.5% PCR prevalence, above which superinfections dominate. Finally, we characterise the predictive power of six metrics of parasite genetics for detecting changes in transmission intensity, before grouping them in an ensemble statistical model. The model predicted malaria prevalence with a mean absolute error of 0.055. Different assumptions about the availability of sample metadata were considered, with the most accurate predictions of malaria prevalence made when the clinical status and age of sampled individuals is known. Parasite genetics may provide a novel surveillance tool for estimating the prevalence of malaria in areas in which prevalence surveys are not feasible. However, the findings presented here reinforce the need for patient metadata to be recorded and made available within all future attempts to use parasite genetics for surveillance.

Journal article

Hogan A, Jewell B, Sherrard-Smith E, Watson O, Whittaker C, Hamlet A, Smith J, Winskill P, Verity R, Baguelin M, Lees J, Whittles L, Ainslie K, Bhatt S, Boonyasiri A, Brazeau N, Cattarino L, Cooper L, Coupland H, Cuomo-Dannenburg G, Dighe A, Djaafara A, Donnelly C, Eaton J, van Elsland S, Fitzjohn R, Fu H, Gaythorpe K, Green W, Haw D, Hayes S, Hinsley W, Imai N, Laydon D, Mangal T, Mellan T, Mishra S, Parag K, Thompson H, Unwin H, Vollmer M, Walters C, Wang H, Ferguson N, Okell L, Churcher T, Arinaminpathy N, Ghani A, Walker P, Hallett Tet al., 2020, Potential impact of the COVID-19 pandemic on HIV, TB and malaria in low- and middle-income countries: a modelling study, The Lancet Global Health, Vol: 8, Pages: e1132-e1141, ISSN: 2214-109X

Background: COVID-19 has the potential to cause substantial disruptions to health services, including by cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions in services for human immunodeficiency virus (HIV), tuberculosis (TB) and malaria in low- and middle-income countries with high burdens of those disease could lead to additional loss of life. Methods: We constructed plausible scenarios for the disruptions that could be incurred during the COVID-19 pandemic and used established transmission models for each disease to estimate the additional impact on health that could be caused in selected settings.Findings: In high burden settings, HIV-, TB- and malaria-related deaths over five years may increase by up to 10%, 20% and 36%, respectively, compared to if there were no COVID-19 pandemic. We estimate the greatest impact on HIV to be from interruption to antiretroviral therapy, which may occur during a period of high health system demand. For TB, we estimate the greatest impact is from reductions in timely diagnosis and treatment of new cases, which may result from any prolonged period of COVID-19 suppression interventions. We estimate that the greatest impact on malaria burden could come from interruption of planned net campaigns. These disruptions could lead to loss of life-years over five years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV/TB epidemics.Interpretation: Maintaining the most critical prevention activities and healthcare services for HIV, TB and malaria could significantly reduce the overall impact of the COVID-19 pandemic.Funding: Bill & Melinda Gates Foundation, The Wellcome Trust, DFID, MRC

Journal article

Mumtaz R, Okell LC, Challenger JD, 2020, How often do symptoms return after unsuccessful drug treatment for malaria? A systematic review and meta-analysis

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>In clinical trials of therapies for uncomplicated <jats:italic>Plasmodium falciparum</jats:italic>, there are usually some patients who fail treatment even in the absence of drug resistance. Treatment failures are categorised as ‘clinical’ or ‘parasitological’ failures, the latter indicating that recrudescence of the infection has occurred without inducing the return of symptoms. Asymptomatic treatment failure has public health implications for continued malaria transmission and may be important for the spread of drug-resistant malaria. As the number of treatment failures in an individual trial is often low, it is difficult to assess how commonplace asymptomatic treatment failure is, and with what factors it is associated.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>A systematic literature review was carried out on clinical trials of artemether-lumefantrine (AL) in patients seeking treatment for symptomatic uncomplicated falciparum malaria, and information on symptoms during treatment failure was recorded. Only treatment failures examined by polymerase chain reaction (PCR) were included, so as to exclude reinfections. Using a multivariable Bayesian regression model, we explored factors potentially explaining the proportion of recrudescent infections which are symptomatic across the trials included in our study.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Across 60 published trials including 9137 malaria patients we found that 40.8% (95% CIs [35.9-45.8%]) of late treatment failures were symptomatic. We found a positive association between transmission intensity and the observed proportion of treatment failures that were asymptomatic. We also found that symptoms were more likely to return in t

Journal article

Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C, Rossi L, Manganelli R, Loregian A, Navarin N, Abate D, Sciro M, Merigliano S, De Canale E, Vanuzzo MC, Besutti V, Saluzzo F, Onelia F, Pacenti M, Parisi S, Carretta G, Donato D, Flor L, Cocchio S, Masi G, Sperduti A, Cattarino L, Salvador R, Nicoletti M, Caldart F, Castelli G, Nieddu E, Labella B, Fava L, Drigo M, Gaythorpe KAM, Imperial College COVID-19 Response Team, Brazzale AR, Toppo S, Trevisan M, Baldo V, Donnelly CA, Ferguson NM, Dorigatti I, Crisanti Aet al., 2020, Suppression of a SARS-CoV-2 outbreak in the Italian municipality of Vo', Nature, Vol: 584, Pages: 425-429, ISSN: 0028-0836

On the 21st of February 2020 a resident of the municipality of Vo', a small town near Padua, died of pneumonia due to SARS-CoV-2 infection1. This was the first COVID-19 death detected in Italy since the emergence of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. We collected information on the demography, clinical presentation, hospitalization, contact network and presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. On the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI) 2.1-3.3%). On the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% Confidence Interval (CI) 0.8-1.8%). Notably, 42.5% (95% CI 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (i.e. did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (p-values 0.62 and 0.74 for E and RdRp genes, respectively, Exact Wilcoxon-Mann-Whitney test). This study sheds new light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides new insights into its transmission dynamics and the efficacy of the implemented control measures.

Journal article

Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, Coupland H, Whittaker C, Zhu H, Berah T, Eaton JW, Monod M, Perez Guzman PN, Schmit N, Cilloni L, Ainslie K, Baguelin M, Boonyasiri A, Boyd O, Cattarino L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Grassly N, Green W, Hallett T, Hamlet A, Hinsley W, Jeffrey B, Knock E, Laydon D, Nedjati Gilani G, Nouvellet P, Parag K, Siveroni I, Thompson H, Verity R, Volz E, Walters C, Wang H, Watson O, Winskill P, Xi X, Walker P, Ghani AC, Donnelly CA, Riley SM, Vollmer MAC, Ferguson NM, Okell LC, Bhatt Set al., 2020, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature, Vol: 584, Pages: 257-261, ISSN: 0028-0836

Following the emergence of a novel coronavirus1 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions such as closure of schools and national lockdowns. We study the impact of major interventions across 11 European countries for the period from the start of COVID-19 until the 4th of May 2020 when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks prior, allowing for the time lag between infection and death. We use partial pooling of information between countries with both individual and shared effects on the reproduction number. Pooling allows more information to be used, helps overcome data idiosyncrasies, and enables more timely estimates. Our model relies on fixed estimates of some epidemiological parameters such as the infection fatality rate, does not include importation or subnational variation and assumes that changes in the reproduction number are an immediate response to interventions rather than gradual changes in behavior. Amidst the ongoing pandemic, we rely on death data that is incomplete, with systematic biases in reporting, and subject to future consolidation. We estimate that, for all the countries we consider, current interventions have been sufficient to drive the reproduction number Rt below 1 (probability Rt< 1.0 is 99.9%) and achieve epidemic control. We estimate that, across all 11 countries, between 12 and 15 million individuals have been infected with SARS-CoV-2 up to 4th May, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions and lockdown in particular have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.

Journal article

Sherrard-Smith E, Hogan AB, Hamlet A, Watson OJ, Whittaker C, Winskill P, Ali F, Mohammad AB, Uhomoibhi P, Maikore I, Ogbulafor N, Nikau J, Kont MD, Challenger JD, Verity R, Lambert B, Cairns M, Rao B, Baguelin M, Whittles LK, Lees JA, Bhatia S, Knock ES, Okell L, Slater HC, Ghani AC, Walker PGT, Okoko OO, Churcher TSet al., 2020, The potential public health consequences of COVID-19 on malaria in Africa., Nature Medicine, Vol: 26, Pages: 1411-1416, ISSN: 1078-8956

The burden of malaria is heavily concentrated in sub-Saharan Africa (SSA) where cases and deaths associated with COVID-19 are rising1. In response, countries are implementing societal measures aimed at curtailing transmission of SARS-CoV-22,3. Despite these measures, the COVID-19 epidemic could still result in millions of deaths as local health facilities become overwhelmed4. Advances in malaria control this century have been largely due to distribution of long-lasting insecticidal nets (LLINs)5, with many SSA countries having planned campaigns for 2020. In the present study, we use COVID-19 and malaria transmission models to estimate the impact of disruption of malaria prevention activities and other core health services under four different COVID-19 epidemic scenarios. If activities are halted, the malaria burden in 2020 could be more than double that of 2019. In Nigeria alone, reducing case management for 6 months and delaying LLIN campaigns could result in 81,000 (44,000-119,000) additional deaths. Mitigating these negative impacts is achievable, and LLIN distributions in particular should be prioritized alongside access to antimalarial treatments to prevent substantial malaria epidemics.

Journal article

Fu H, Xi X, Wang H, Boonyasiri A, Wang Y, Hinsley W, Fraser K, McCabe R, Olivera Mesa D, Skarp J, Ledda A, Dewe T, Dighe A, Winskill P, van Elsland S, Ainslie K, Baguelin M, Bhatt S, Boyd O, Brazeau N, Cattarino L, Charles G, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Green W, Hamlet A, Hauck K, Haw D, Jeffrey B, Laydon D, Lees J, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Parag K, Ragonnet-Cronin M, Riley S, Schmit N, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Watson O, Whittaker C, Whittles L, Imai N, Bhatia S, Ferguson Net al., 2020, Report 30: The COVID-19 epidemic trends and control measures in mainland China

Report

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00569638&limit=30&person=true