Publications
96 results found
Martin A, Opreni A, Vizzaccaro A, et al., 2023, Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds, Journal of Theoretical, Computational and Applied Mechanics
<jats:p xml:lang="en">The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional invariant-based span of the phase space. It can be directly applied to finite element problems. When the development is performed using an arbitrary order asymptotic expansion, it provides an efficient reduced-order modeling strategy for geometrically nonlinear structures. It is here applied to the case of rotating structures featuring centrifugal effect. A rotating cantilever beam with large amplitude vibrations is first selected in order to highlight the main features of the method. Numerical results show that the method provides accurate reduced-order models (ROMs) for any rotation speed and vibration amplitude of interest with a single master mode, thus offering remarkable reduction in the computational burden. The hardening/softening transition of the fundamental flexural mode with increasing rotation speed is then investigated in detail and a ROM parametrised with respect to rotation speed and forcing frequencies is detailed. The method is then applied to a twisted plate model representative of a fan blade, showing how the technique can handle more complex structures. Hardening/softening transition is also investigated as well as interpolation of ROMs, highlighting the efficacy of the method.</jats:p>
Yuan J, Salles L, Nowell D, et al., 2023, Influence of mesoscale friction interface geometry on the nonlinear dynamic response of large assembled structures, Mechanical Systems and Signal Processing, Vol: 187, ISSN: 0888-3270
Friction interfaces are unavoidable components of large engineering assemblies since they enable complex designs, ensure alignment, and enable the transfer of mechanical loads between the components. Unfortunately, they are also a major source of nonlinearities and uncertainty in the static and dynamic response of the assembly, due to the complex frictional physics occurring at the interface. One major contributor to the nonlinear dynamic behavior of the interface is the mesoscale geometry of a friction interface. Currently, the effects of the interface geometry on the nonlinear dynamic response is often ignored in the analysis due to the high computational cost of discretizing the interface to such fine levels for classical finite element analysis. In this paper, the influence of mesoscale frictional interface geometries on the nonlinear dynamic response is investigated through an efficient multi-scale modeling framework based on the boundary element method. A highly integrated refined contact analysis, static analysis, and nonlinear modal analysis approach are presented to solve a multi-scale problem where mesoscale frictional interfaces are embedded into the macroscale finite element model. The efficiency of the framework is demonstrated and validated against an existing dovetail dogbone test rig. Finally, the effects of different mesoscale interface geometries such as surface waviness and edge radius, are numerically investigated, further highlighting the influence of mesoscale interface geometries on the nonlinear dynamics of jointed structures and opening a new research direction for the design of friction interfaces in friction involved mechanical systems.
Tüfekci M, Özkal B, Maharaj C, et al., 2023, Strain-rate-dependent mechanics and impact performance of epoxy-based nanocomposites, Composites Science and Technology, Vol: 233, Pages: 1-17, ISSN: 0266-3538
Strain-rate-dependent mechanical properties and impact performance of manufactured epoxy-based nanocomposites are investigated. As reinforcements, fumed silica (FS) and halloysite nanotube (HNT) are used alongside Albipox 1000 and Nanopox F700. First, the internal structures of the composites are visualised using scanning electron microscopy (SEM). To identify the strain-rate-dependent mechanical properties, three-point bend tests are conducted at three different strain rate levels. For the impact resistance, Charpy impact tests are performed. For further investigations of the mechanical properties of the composites, mean-field homogenisation (MFH) and finite element (FE) analyses on the representative volume elements (RVE) are performed for each type of composite material. Overall, the modelling and experiments are in good agreement and account for the mechanical behaviour of these epoxy-based nanocomposites.
Vizzaccaro A, Opreni A, Salles L, et al., 2023, Higher-Order Invariant Manifold Parametrisation of Geometrically Nonlinear Structures Modelled with Large Finite Element Models, 40th Conference and Exposition on Structural Dynamics (IMAC), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 233-236, ISSN: 2191-5644
Rendu Q, Salles L, 2023, Development of a surrogate model for uncertainty quantification of compressor performance due to manufacturing tolerance, Journal of the Global Power and Propulsion Society, Vol: 7, Pages: 257-268
In gas turbines and jet engines, stagger angle and tip gap variations between adjacent blades lead to the deterioration of performance. To evaluate the effect of manufacturing tolerance on performance, a CFD-based uncertainty quantification analysis is performed in this work. However, evaluating dozens of thousands of rotor assembly through CFD simulations would be computationally prohibitive. A surrogate model is thus developed to predict compressor performance given an ordered set of manufactured blades. The model is used to predict the influence of tip gap and stagger angle variations on maximum isentropic efficiency. The results confirm that the best arrangement is obtained by minimizing the stagger angle variation between adjacent blades, and by maximizing the tip gap vari-ation. Another finding is that the best arrangement yields the lowest variabil-ity, the range of maximum efficiency being 4 times sharper (resp. 2 times) than worst arrangement for stagger angle variations (resp. tip gap variations). Not measuring manufacturing tolerance, or not specifying any strategy for the blade arrangement, lead to variability as large as the worst arrangement.
Lasen M, Salles L, Dini D, et al., 2023, Tribomechadynamics Challenge 2021: A Multi-harmonic Balance Analysis from Imperial College London, 40th Conference and Exposition on Structural Dynamics (IMAC), Publisher: SPRINGER INTERNATIONAL PUBLISHING AG, Pages: 79-82, ISSN: 2191-5644
Denimal E, Chevalier R, Renson L, et al., 2022, Shape optimisation for friction dampers with stress constraint, 40th Conference and Exposition on Structural Dynamics, Publisher: Springer International Publishing, Pages: 65-73, ISSN: 2191-5644
Friction dampers are classically used in turbomachinery for bladed discs to control the levels of vibrations at resonance and limit the risk of fatigue failure. It consists of small metal components located under the platforms of the blades, which dissipate the vibratory energy through friction when a relative displacement between the blades and the damper appears. It is well known that the shape of such component has a strong influence on the damping properties and should be designed with a particular attention. With the arrival of additive manufacturing, new dedicated shapes for these dampers can be considered, determined with specific numerical methods as topological optimisation (TO). However, the presence of the contact nonlinearity challenges the use of traditional TO methods to minimise the vibration levels at resonance. In this work, the topology of the damper is parametrised with the moving morphable components (MMC) framework and optimised based on meta-modelling techniques: here kriging coupled with the efficient global optimisation (EGO) algorithm. The level of vibration at resonance is computed based on the harmonic balance method augmented with a constraint to aim directly for the resonant solution. It corresponds to the objective function to be minimised. Additionally, a mechanical constraint based on static stress analysis is also considered to propose reliable damper designs. Results demonstrate the efficiency of the method and show that damper geometries that meet the engineers’ requirements can be identified.
Suriyanarayanan V, Rendu Q, Vahdati M, et al., 2022, Effect of Manufacturing Tolerance in Flow Past a Compressor Blade, Publisher: ASME, ISSN: 0889-504X
- Author Web Link
- Cite
- Citations: 4
Sun Y, Denimal E, Yuan J, et al., 2022, Geometric design of friction ring dampers in blisks using nonlinear modal analysis and Kriging surrogate model, Structural and Multidisciplinary Optimization, Vol: 65, ISSN: 1615-1488
Integrally bladed disks (blisk) have been widely used in the turbo-machinery industry due to its high aerodynamic performance and structural efficiency. A friction ring damper (FRD) is usually integrated in the system to improve its low damping. However, the design of the geometry of this FRD become complex and computationally expensive due to the strong nonlinearities from friction interfaces. In this work, we propose an efficient modelling strategy based on advanced nonlinear modal analysis and Kriging surrogate models to design and optimize the geometry of a 3D FRD attached to a high fidelity full-scale blisk. The 3D ring damper is parametrised with a few key geometrical parameters. The impact of each geometric parameter and their sensitivities to nonlinear dynamic response can be efficiently assessed using Kriging meta-modelling based on a few damped nonlinear normal modes. Results demonstrate that the damping performances of ring dampers can be substantially optimized through the proposed modelling strategy whilst key insights for the design of the rings are given. It is also demonstrated that the distribution of the contact normal load on the contact interfaces has a strong influence on the damping performances and can be effectively tuned via the upper surface geometry of the ring dampers.
Denimal E, Renson L, Wong C, et al., 2022, Topology optimisation of friction under-platform dampers using moving morphable components and the efficient global optimization algorithm, Structural and Multidisciplinary Optimization: computer-aided optimal design of stressed solids and multidisciplinary systems, Vol: 65, Pages: 1-19, ISSN: 1615-147X
Under-platform dampers (UPDs) are traditionally used in aircraft engines to reduce the risk of high cycle fatigue. By introducing friction in the system, vibrations at resonance are damped. However, UDPs are also the source of nonlinear behaviours making the analysis and the design of such components complex. The shape of such friction dampers has a substantial impact on the damping performances, and topology optimisation is seldomly utilised—particularly for nonlinear structures. In the present work, we present a numerical approach to optimise the topology of friction dampers in order to minimise the vibration amplitude at a resonance peak. The proposed approach is based on the moving morphable components framework to parametrise the damper topology, and the efficient global optimisation algorithm is employed for the optimisation. The results demonstrate the relevance of such an approach for the optimisation of nonlinear vibrations in the presence of friction. New efficient damper geometries are identified in a few iterations of the algorithm, illustrating the efficiency of the approach. Results show that the most efficient geometry divides the vibration amplitude at resonance by 3, corresponds to a lower mass (80%) and a smaller frequency shift compared to the non-optimised case. More generally, the different geometries are analysed and tools for clustering are proposed. Different clusters are identified and compared. Thus, more general conclusions can be obtained. More specifically, the most efficient geometries correspond to geometries that reduce the mass of the damper and increase the length of the contact surface. Physically, it corresponds to a reduction of the initial normal contact pressure, which implies that the contact points enter stick/slip earlier, bringing more damping. The results show how topology optimisation can be employed for nonlinear vibrations to identify efficient layouts for components.
De Cherisey M, Salles L, Renson L, et al., 2022, OPTIMIZATION OF A TURBOMACHINERY BLADE WITH REGARDS TO TIP-RUB EVENTS
Tip-rub events, also called blade-casing interactions, are problematic structural phenomena that can lead to complete engine failure. They mainly occur in compressors when a blade tip touches the casing and starts vibrating. If one of the blade natural modes is excited by an engine order, this can lead to an uncontrolled resonance. Therefore, the understanding and the consideration of these interactions is crucial to the development of safe aircraft engines. Various numerical models and dynamic simulators have been developed, including the in-house one, jm62. It implements a stick-slip model and considers a potential liner and casing wear. Even if it gives precise results, it is computationally expensive and needs a significant amount of post-processing. It is therefore not really adapted to early design stages or quick automated processes (parametric study or optimization). An automated workflow using SALOME-MECA and its submodules had been developed and permits to perform simple and fast parametric studies and shape optimizations. The proposed tool has been used to study the influence of the twist, lean, sweep and tip thickness-to-chord ratio on a modified version of a NASA Rotor 37 blade. The risk of high-level vibration of a blade due to tip-rub events is assessed using the concept of clearance consumption. The clearance consumption is defined as the component of the linear or nonlinear mode shape that defines the distance between the tip of the blade and the casing. From the reference blade and the parametric study results, an optimized candidate was generated using the clearance consumption as the objective function to minimize This process resulted in a geometry with a lower twist angle and a significant forward sweep. Two scenario of tip rub events have been performed on the optimised blades. The testing relies on the in-house time integration software jm62. The candidate has showed a 85% reduction in the amplitude of the vibratory response for the first sce
Barreau V, Denimal E, Salles L, 2022, TOPOLOGICAL OPTIMISATION AND 3D PRINTING OF A BLADED DISC
In turbomachinery, components are pushed to their limits to meet more stringent specifications in order to increase their performances. In this context, structural topology optimisation is a promising technology as it improves substantially the mechanical properties while drastically reducing the mass. With the coming of additive manufacturing, optimised geometry can be manufactured making this technology even more attractive. The aim of this work is to investigate the potential of topology optimisation to optimise a full bladed disc to improve its dynamic performances in terms of mass, stress and modal coincidences. The topology of a 3D-Finite Element Model of an academic bladed disc is optimised in this work and experimental validation is expected. So first, the disc is designed to fit in the test-rig and the mechanical integrity of the 3D-printed disc is experimentally verified. Second, the topology of the blades is optimised. Based on a trial-and-error process, the appropriate topology optimisation problem properties for vibration optimisation are identified. Thus, adding a static force at the blade tip forces a better material distribution over the domain and increases the blade stiffness. To minimise the number of coincidences, a numerical strategy based on iterative topology optimisation simulations is proposed to identify the correct set of frequential constraints. Final results show that the mass of the blade is reduced up to 32% and the number of frequential coincidences is reduced from 11 to 4. Final geometries are 3D-printed and mounted on the disc.
Yuan J, Sun Y, Schwingshackl C, et al., 2022, Computation of damped nonlinear normal modes for large scale nonlinear systems in a self-adaptive modal subspace, Mechanical Systems and Signal Processing, Vol: 162, Pages: 1-16, ISSN: 0888-3270
The concept of nonlinear modes has been proved useful to interpret a wide class of nonlinear phenomena in mechanical systems such as energy dependent vibrations and internal resonance. Although this concept was successfully applied to some small scale structures, the computational cost for large-scale nonlinear models remains an important issue that prevents the wider spread of this nonlinear analysis tool in industry. To address this challenge, in this paper, we describe an advanced adaptive reduced order modelling (ROM) technique to compute the damped nonlinear modes for a large scale nonlinear system with frictional interfaces. The principle of this new ROM technique is that it enables the nonlinear modes to be computed in a reduced self-adaptive modal subspace while maintaining similar accuracy to classical reduction techniques. The size of such self-adaptive subspace is only proportional to the number of active slipping nodes in friction interfaces leading to a significant reduction of computing time especially when the friction interface is in a micro-slip motion. The procedure of implementing this adaptive ROM into the computation of steady state damped nonlinear mode is presented. The case of an industrial-scale fan blade system with dovetail joints in aero-engines is studied. Damped nonlinear normal modes based on the concept of extended periodic motion is successfully calculated using the proposed adaptive ROM technique. A comparison between adaptive ROM with the classical Craig-Bampton method highlights the capability of the adaptive ROM to accurately capture the resonant frequency and modal damping ratio while achieving a speedup up to 120. The obtained nonlinear modes from adaptive ROM are also validated by comparing its synthesized forced response against the directly computed ones using Craig-Bampton (CB) method. The study further shows the reconstructed forced frequency response from damped nonlinear modes are able to accurately capture reference for
Yuan J, Salles L, Schwingshackl C, 2022, Effects of the geometry of friction interfaces on the nonlinear dynamics of jointed structure, Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022, Publisher: Springer International Publishing, Pages: 67-74, ISSN: 2191-5644
Vizzaccaro A, Shen Y, Salles L, et al., 2021, Direct computation of nonlinear mapping via normal form for reduced-order models of finite element nonlinear structures, Computer Methods in Applied Mechanics and Engineering, Vol: 384, ISSN: 0045-7825
The direct computation of the third-order normal form for a geometrically nonlinear structure discretised with the finite element (FE) method, is detailed. The procedure allows to define a nonlinear mapping in order to derive accurate reduced-order models (ROM) relying on invariant manifold theory. The proposed reduction strategy is direct and simulation free, in the sense that it allows to pass from physical coordinates (FE nodes) to normal coordinates, describing the dynamics in an invariant-based span of the phase space. The number of master modes for the ROM is not a priori limited since a complete change of coordinate is proposed. The underlying theory ensures the quality of the predictions thanks to the invariance property of the reduced subspace, together with their curvatures in phase space that accounts for the non-resonant nonlinear couplings. The method is applied to a beam discretised with 3D elements and shows its ability in recovering internal resonance at high energy. Then a fan blade model is investigated and the correct prediction given by the ROMs are assessed and discussed. A method is proposed to approximate an aggregate value for the damping, that takes into account the damping coefficients of all the slave modes, and also using the Rayleigh damping model as input. Frequency–response curves for the beam and the blades are then exhibited, showing the accuracy of the proposed method.
Zhu Y-P, Yuan J, Lang ZQ, et al., 2021, The data-driven surrogate model-based dynamic design of aeroengine fan systems, Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, Vol: 143, Pages: 1-8, ISSN: 0742-4795
High-cycle fatigue failures of fan blade systems due to vibrational loads are of great concern in the design of aeroengines, where energy dissipation by the relative frictional motion in the dovetail joints provides the main damping to mitigate the vibrations. The performance of such a frictional damping can be enhanced by suitable coatings. However, the analysis and design of coated joint roots of gas turbine fan blades are computationally expensive due to strong contact friction nonlinearities and also complex physics involved in the dovetail. In this study, a data-driven surrogate model, known as the Nonlinear in Parameter AutoRegressive with eXegenous input (NP-ARX) model, is introduced to circumvent the difficulties in the analysis and design of fan systems. The NP-ARX model is a linear input–output model, where the model coefficients are nonlinear functions of the design parameters of interest, such that the Frequency Response Function (FRF) can be directly obtained and used in the system analysis and design. A simplified fan-bladed disc system is considered as the test case. The results show that using the data-driven surrogate model, an efficient and accurate design of aeroengine fan systems can be achieved. The approach is expected to be extended to solve the analysis and design problems of many other complex systems.
Vizzaccaro A, Opreni A, Salles L, et al., 2021, High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to large amplitude vibrations and uncovering of a folding point, Publisher: arXiv
This paper investigates model-order reduction methods for geometricallynonlinear structures. The parametrisation method of invariant manifolds is usedand adapted to the case of mechanical systems expressed in the physical basis,so that the technique is directly applicable to problems discretised by thefinite element method. Two nonlinear mappings, respectively related todisplacement and velocity, are introduced, and the link between the two is madeexplicit at arbitrary order of expansion. The same development is performed onthe reduced-order dynamics which is computed at generic order following thedifferent styles of parametrisation. More specifically, three different stylesare introduced and commented: the graph style, the complex normal form styleand the real normal form style. These developments allow making betterconnections with earlier works using these parametrisation methods. Thetechnique is then applied to three different examples. A clamped-clamped archwith increasing curvature is first used to show an example of a system with asoftening behaviour turning to hardening at larger amplitudes, which can bereplicated with a single mode reduction. Secondly, the case of a cantileverbeam is investigated. It is shown that the invariant manifold of the first modeshows a folding point at large amplitudes which is not connected to an internalresonance. This exemplifies the failure of the graph style due to the foldingpoint, whereas the normal form style is able to pass over the folding. Finally,A MEMS micromirror undergoing large rotations is used to show the importance ofusing high-order expansions on an industrial example.
Yuan J, Fantetti A, Denimal E, et al., 2021, Propagation of friction parameter uncertainties in the nonlinear dynamic response of turbine blades with underplatform dampers, Mechanical Systems and Signal Processing, Vol: 156, Pages: 1-19, ISSN: 0888-3270
Underplatform dampers are widely used in turbomachinery to mitigate structural vibrations by means of friction dissipation at the interfaces. The modelling of such friction dissipation is challenging because of the high variability observed in experimental measurements of contact parameters. Although this variability is not commonly accounted for in state-of-the-art numerical solvers, probabilistic approaches can be implemented to include it in dynamics simulations in order to significantly improve the estimation of the damper performance. The aim of this work is to obtain uncertainty bands in the dynamic response of turbine blades equipped with dampers by including the variability observed in interfacial contact parameters. This variability is experimentally quantified from a friction rig and used to generate uncertainty bands by combining a deterministic state-of-the-art numerical solver with stochastic Polynomial Chaos Expansion (PCE) models. The bands thus obtained are validated against experimental data from an underplatform damper test rig. In addition, the PCEs are also employed to perform a variance-based global sensitivity analysis to quantify the influence of contact parameters on the variation in the nonlinear dynamic response via Sobol indices. The analysis highlights that the influence of each contact parameter in vibration amplitude strongly varies over the frequency range, and that Sobol indices can be effectively used to analyse uncertainties associated to structures with friction interfaces providing valuable insights into the physics of such complex nonlinear systems.
Sun Y, Yuan J, Vizzaccaro A, et al., 2021, Comparison of different methodologies for the computation of damped nonlinear normal modes and resonance prediction of systems with non-conservative nonlinearities, Nonlinear Dynamics, Vol: 104, Pages: 3077-3107, ISSN: 0924-090X
The nonlinear modes of a non-conservative nonlinear system are sometimes referred to as damped nonlinear normal modes (dNNMs). Because of the non-conservative characteristics, the dNNMs are no longer periodic. To compute non-periodic dNNMs using classic methods for periodic problems, two concepts have been developed in the last two decades: complex nonlinear mode (CNM) and extended periodic motion concept (EPMC). A critical assessment of these two concepts applied to different types of non-conservative nonlinearities and industrial full-scale structures has not been thoroughly investigated yet. Furthermore, there exist two emerging techniques which aim at predicting the resonant solutions of a nonlinear forced response using the dNNMs: extended energy balance method (E-EBM) and nonlinear modal synthesis (NMS). A detailed assessment between these two techniques has been rarely attempted in the literature. Therefore, in this work, a comprehensive comparison between CNM and EPMC is provided through two illustrative systems and one engineering application. The EPMC with an alternative damping assumption is also derived and compared with the original EPMC and CNM. The advantages and limitations of the CNM and EPMC are critically discussed. In addition, the resonant solutions are predicted based on the dNNMs using both E-EBM and NMS. The accuracies of the predicted resonances are also discussed in detail.
Niedergesass B, Papangelo A, Grolet A, et al., 2021, Experimental observations of nonlinear vibration localization in a cyclic chain of weakly coupled nonlinear oscillators, Journal of Sound and Vibration, Vol: 497, Pages: 1-10, ISSN: 0022-460X
Experimental results on nonlinear vibration localization in a cyclic chain of weakly coupled oscillators with clearance nonlinearity are reported. Numerical modelling and analysis complements the experimental study. A reduced order model is derived and numerical analysis based on the harmonic balance method demonstrates the existence of multiple classes of stable spatially localized nonlinear vibration states. The experiments agree very well with the numerical results. The findings suggest that vibration localization due to fundamentally nonlinear effects may also arise in mechanical structures with relevance in engineering.
Shen Y, Vizzaccaro A, Kesmia N, et al., 2021, Comparison of reduction methods for finite element geometrically nonlinear beam structures, Vibration, Vol: 4, Pages: 175-204, ISSN: 2571-631X
The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods are compared: the implicit condensation and expansion (ICE), the quadratic manifold computed from modal derivatives (MD), and the direct normal form (DNF) procedure, the latter expressing the reduced dynamics in an invariant-based span of the phase space. The methods are first presented in order to underline their common points and differences, highlighting in particular that ICE and MD use reduction subspaces that are not invariant. A simple analytical example is then used in order to analyze how the different treatments of quadratic nonlinearities by the three methods can affect the predictions. Finally, three beam examples are used to emphasize the ability of the methods to handle curvature (on a curved beam), 1:1 internal resonance (on a clamped-clamped beam with two polarizations), and inertia nonlinearity (on a cantilever beam).
Fontanela F, Vizzaccaro A, Auvray J, et al., 2021, Nonlinear vibration localisation in a symmetric system of two coupled beams, Nonlinear Dynamics, Vol: 103, Pages: 3417-3428, ISSN: 0924-090X
We report nonlinear vibration localisation in a system of two symmetric weakly coupled nonlinear oscillators. A two degree-of-freedom model with piecewise linear stiffness shows bifurcations to localised solutions. An experimental investigation employing two weakly coupled beams touching against stoppers for large vibration amplitudes confirms the nonlinear localisation.
Yuan J, Schwingshackl C, wong C, et al., 2021, On an improved adaptive reduced order model for the computation of steady state vibrations in large-scale non-conservative system with friction joints, Nonlinear Dynamics, Vol: 103, Pages: 3283-3300, ISSN: 0924-090X
Joints are commonly used in many large-scale engineering systems to ease assembly, and ensure structural integrity and effective load transmission. Most joints are designed around friction interfaces, which can transmit large static forces, but tend to introduce stick-slip transition during vibrations, leading to a nonlinear dynamic system. Tools for the complex numerical prediction of such nonlinear systems are available today, but their use for large-scale applications is regularly prevented by high computational cost. To address this issue, a novel adaptive reduced-order model (ROM) has recently been developed, significantly decreasing the computational time for such high fidelity simulations. Although highly effective, significant improvements to the proposed approach is presented and demonstrated in this paper, further increasing the efficiency of the ROM. An energy-based error estimator was developed and integrated into the nonlinear spectral analysis, leading to a significantly higher computational speed by removing insignificant static modes from the stuck contact nodes in the original reduced basis, and improving the computational accuracy by eliminating numerical noise. The effectiveness of the new approach was shown on an industrial-scale fan blades system with a dovetail joints, showing that the improved adaptive method can be 2–3 times more computationally efficient than the original adaptive method especially at high excitation levels but also effectively improve the accuracy of the original method.
Sun Y, Yuan J, Denimal E, et al., 2021, Nonlinear modal analysis of frictional ring damper for compressor blisk, Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, Vol: 143, Pages: 1-8, ISSN: 0742-4795
The use of integrally blisk is becoming popular because of the advantages in aerodynamic efficiency and mass reduction. However, in an integrally blisk, the lack of the contact interface leads to a low structural damping compared to an assembled bladed disk. One emerging damping technique for the integrally blisk is based on the use of friction ring damper, which exploits the contact interfaces at the underneath of the disk. In this paper, three different geometries of the ring dampers are investigated for damping enhancement of a blisk. A full-scale compressor blisk is considered as a case study where a node-to-node contact model is used to compute the contact forces. The dynamic behavior of the blisk with the ring damper is investigated by using nonlinear modal analysis, which allows a direct estimation of the damping generated by the friction interface. The damping performance for the different ring dampers is evaluated and compared. It appears that the damping efficiency as well as the shift in the resonant frequency for the different geometries is highly related to the nodal diameter and contact pressure/gap distributed within contact interface. The geometry of the ring damper has significant impact on the damping performance.
Denimal E, Wong C, Salles L, et al., 2021, On the efficiency of a conical underplatform damper for turbines, Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, Vol: 143, Pages: 1-9, ISSN: 0742-4795
Underplatform dampers (UPDs) are commonly used in aircraft engines to limit the risk of high-cycle fatigue of turbine blades. The latter is located in a groove between two consecutive blades. The dry friction contact interface between the damper and the blades dissipates energy and so reduces the vibration amplitudes. Two common geometries of dampers are used nowadays, namely wedge and cylindrical dampers, but their efficiency is limited when the blades have an in-phase motion (or a motion close to it), since the damper tends to have a pure rolling motion. The objective of this study is to analyze a new damper geometry, based on a conical shape, which prevents from this pure rolling motion of the damper and ensures a high kinematic slip. The objective of this study is to demonstrate the damping efficiency of this geometry. Hence, in a first part, the kinematic slip is approximated with analytical considerations. Then, a nonlinear dynamic analysis is performed, and the damping efficiency of this new geometry is compared to the wedge and the cylindrical geometries. The results demonstrate that the conical damper has a high damping capacity and is more efficient and more robust than the two others.
Denimal E, El Haddad F, Wong C, et al., 2021, Topological optimization of under-platform dampers with moving morphable components and global optimization algorithm for nonlinear frequency response, Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, Vol: 143, Pages: 1-9, ISSN: 0742-4795
To limit the risk of high cycle fatigue, underplatform dampers (UDPs) are traditionally used in aircraft engines to control the level of vibration. Many studies demonstrate the impact of the geometry of the damper on its efficiency, thus the consideration of topological optimization (TO) to find the best layout of the damper seems natural. Because of the nonlinear behavior of the structure due to the friction contact interface, classical methods of TO are not usable. This study proposes to optimize the layout of an UDP to reduce the level of nonlinear vibrations computed with the multiharmonic balance method (MHBM). The approach of TO employed is based on the moving morphable components (MMC) framework together with the Kriging and the efficient global optimization algorithm to solve the optimization problem. The results show that the level of vibration of the structure can be reduced to 30% and allow for the identification of different efficient geometries.
Tufekci M, Rendu Q, Yuan J, et al., 2021, Stress and modal analysis of a rotating blade and the effects of nonlocality, ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition, Publisher: American Society of Mechanical Engineers, Pages: 1-12
This study focuses on the quasi-static stress and modal analyses of a rotor blade by using classical and nonlocal elasticity approaches. The finite element method with an additional numerical integration process is used to evaluate the integral equation of nonlocal contionuum mechanics. The blade is assumed to be made of a linear elastic material of weak nonlocal characteristic. Such materials can be composites, metallic foams, nanophased alloys etc. A full-scale fan blade model is chosen as the test case to represent the rotor blade for a modern high bypass ratio turbofan engine. The boundary conditions and loads are chosen based on the steady-state cruising operating conditions of such blades. The nonlocal stresses are calculated by processing the calculated local stresses. To calculate the nonlocal stresses, the integral form of nonlocal elasticity is employed in the discretised domain. The results of the two cases are compared and discussed.
Sun Y, Yuan J, Denimal E, et al., 2021, Nonlinear Modal Analysis of Frictional Ring Damper for Compressor Blisk, ASME Turbo expo 2020
Vizzaccaro A, Givois A, Longobardi P, et al., 2020, Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements, Computational Mechanics, Vol: 66, Pages: 1293-1319, ISSN: 0178-7675
Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on the static application of prescribed displacements in a finite-element context. We show that a particularly slow convergence of the modal expansion is observed when applying the method with 3D elements, because of nonlinear couplings occurring with very high frequency modes involving 3D thickness deformations. Focusing on the case of flat structures, we first show by computing all the modes of the structure that a converged solution can be exhibited by using either static condensation or normal form theory. We then show that static modal derivatives provide the same solution with fewer calculations. Finally, we propose a modified STEP, where the prescribed displacements are imposed solely on specific degrees of freedom of the structure, and show that this adjustment also provides efficiently a converged solution.
Vizzaccaro A, Salles L, Touzé C, 2020, Comparison of nonlinear mappings for reduced-order modellingof vibrating structures: normal form theory and quadraticmanifold method with modal derivatives, Nonlinear Dynamics, Vol: 103, Pages: 3335-3370, ISSN: 0924-090X
The objective of this contribution is to compare two methods proposed recently in order to build efficient reduced-order models for geometrically nonlinear structures. The first method relies on the normal form theory that allows one to obtain a nonlinear change of coordinates for expressing the reduced-order dynamics in an invariant-based span of the phase space. The second method is the modal derivative (MD) approach, and more specifically the quadratic manifold defined in order to derive a second-order nonlinear change of coordinates. Both methods share a common point of view, willing to introduce a nonlinear mapping to better define a reduced-order model that could take more properly into account the nonlinear restoring forces. However the calculation methods are different and the quadratic manifold approach has not the in variance property embedded in its definition. Modal derivatives and static modal derivatives are investigated, and their distinctive features in the treatment of the quadratic nonlinearity is underlined.Assuming a slow/fast decomposition allows understanding how the three methods tend to share equivalent properties. While they give proper estimations for flat symmetric structures having a specific shape of nonlinearities and a clear slow/fast decomposition between flexural and in-plane modes, the treatment of the quadratic nonlinearity makes the predictions different in the case of curved structures such as arches and shells. In the more general case, normal form approach appears preferable since it allows correct predictions of a number of important nonlinear features,including for example the hardening/softening behaviour, whatever the relationships between slave and master coordinates are.
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.