Imperial College London

Dr Lu Tian

Faculty of EngineeringDepartment of Mechanical Engineering

Honorary Lecturer



l.tian14 CV




674City and Guilds BuildingSouth Kensington Campus





Publication Type

11 results found

Tian L, Boyette WR, Lindstedt RP, Guiberti TF, Roberts WLet al., 2022, Transported JPDF modelling and measurements of soot at elevated pressures, Proceedings of the Combustion Institute, ISSN: 1540-7489

Journal article

Simatos P, Tian L, Lindstedt RP, 2021, The impact of molecular diffusion on auto-ignition in a turbulent flow, Combustion and Flame, ISSN: 0010-2180

The inclusion of molecular diffusion into the joint-probability density function (JPDF) method requires terms for molecular transport in physical space and mixing in composition space. The former is typically neglected for high Reynolds number flows but becomes important in flows close to surfaces and for flamelet related reaction-diffusion structures associated with high Damköhler numbers. McDermott and Pope (J. Comp. Phys., 2007) proposed an explicit addition of a molecular transport term to the equation for sub-grid molecular diffusion for the filtered density function method. A related approach was used by Fiolitakis et al. (Combust. Flame, 2014) for the JPDF method when combined with moment based closures. A variant of the method is here combined with comprehensive C1−C2 chemistry featuring 44 chemical species and 256 reactions to study the impact on auto-ignition and flame stabilisation in the well-characterised Cabra burner. It is shown that the contribution of the molecular transport term becomes significant at the flame stabilisation point with predictions of carbon monoxide and, in particular, molecular hydrogen showing a marked improvement. Conditional statistics and the PDF of temperature show that the improvement is due to increased molecular diffusion on the fuel rich side of the flame leading to increased chemical activity. The developed approach is viable for boundary layers while the spatial resolution requirements in terms of the mean scalar gradients may prove limiting for complex flows.

Journal article

Tian L, Schiener MA, Lindstedt RP, 2021, Fully coupled sectional modelling of soot particle dynamics in a turbulent diffusion flame, Proceedings of the Combustion Institute, Vol: 38, Pages: 1365-1373, ISSN: 0082-0784

Soot particle dynamics, including particle size distributions (PSDs) and related statistics, are of increasing practical significance due to evolving regulatory demands. The combination of a mass and number density preserving sectional model with a transported joint probability density function (JPDF) method ensures a full coupling of the joint scalar space, e.g. soot and gas phase reactions and radiative heat losses, within a method that can represent ignition/extinction phenomena as well as the slow (low Damköhler number) soot inception and oxidation chemistry in turbulent flames. This approach is here applied to the sooting non-premixed Sandia ethylene jet flame via a 78-dimensional joint-scalar space, including enthalpy, gas phase species and 62 soot sections. Soot nucleation is treated as a global step from acetylene to pyrene with the rate fitted using comparisons with full detailed chemistry. Soot surface growth is treated via a PAH analogy and soot oxidation is considered via O, OH and O2 using a Hertz–Knudsen approach. Comparisons with measured temperature, gas phase species and the mean soot volume fraction show good agreement while the introduction of zero soot diffusivity leads to substantially improved predictions of the RMS of the soot volume fraction. The calculated PSDs at the burner centreline show a transition from one to two-peaks along the axial direction with the mode of the second peak increasing from 14 to 32 nm. Scatter plots, joint statistics of soot parameters and temperature, and the chemical source terms across soot sections suggest that surface growth is dominant when PSDs are unimodal and that the competition of oxidation, coagulation/aggregation and surface growth leads to a PSD shape transition. It is also shown that local extinction events lead to the presence of soot in cool fuel lean mixtures.

Journal article

Tian L, Lindstedt RP, 2019, Impact of molecular mixing and scalar dissipation rate closures on turbulent bluff-body flames with increasing local extinction, Combustion and Flame, Vol: 206, Pages: 51-67, ISSN: 0010-2180

The Combustion Institute Bluff-body turbulent CH 4 : H 2 (1:1) flames at 50% (HM1), 75% (HM2) and 91% (HM3) of the blow-off velocity (235 m s−1) were studied experimentally by Masri and co-workers and found to exhibit gradually increasing periodic and shear layer instabilities. The latter are coupled with increasing levels of local extinction with subsequent re-ignition further downstream. This study provides a systematic evaluation of the sensitivity of predictions to molecular mixing and scalar dissipation rate closures. The latter include extended forms of the Euclidean Minimum Spanning Tree (EMST) and modified Curl's (MC) models, applicable to premixed turbulent flames via a closure that accounts for local Damköhler number effects (EEMST and EMC), and a conceptually related blended scalar time-scale approach (BEMST and BMC). Computations are performed using a hybrid finite volume (FV) – transported Joint Probability Density Function (JPDF) algorithm featuring stochastic Lagrangian particles, a comprehensive 48-scalar systematically reduced C/H/N/O mechanism, and a second moment method based on the Generalised Langevin Model that provides a partial resolution of the unsteady fluid motion. The sensitivity to solution parameters affecting the temporal resolution is quantified using Fourier transforms of the time histories of velocity and scalar traces. Radial profiles, conditional means and scatter plots are compared to the experimental data along with burning indices based on the conditional mean temperature. Vortex related instabilities ∼ 1 kHz in the outer shear layer appear for all closures with EMC showing periodic local extinction and re-ignition in the neck region for HM3 and flame turbules (i.e., discrete pockets of hot gas) separating periodically at frequencies ∼ 85 Hz. Results are similar to well–resolved JPDF/LES simulations for HM1. It is shown that the EMC and (E)EMST models essentially enclose the experimental data for

Journal article

Tian L, Lindstedt RP, 2019, Evaluation of reaction progress variable - Mixture fraction statistics in partially premixed flames, Proceedings of the Combustion Institute, Vol: 37, Pages: 2241-2248, ISSN: 1540-7489

The mixture fraction and reaction progress variables are key for presumed probability density function (PDF) based flamelet models for partially premixed flames. The importance of the joint statistics of these two variables are evaluated using a joint composition-enthalpy transported PDF/Finite Volume method applied to established databases for inhomogeneous jet flames. The accuracy of the approach is first examined for three flames with different mixture fraction inlet profiles and departures from blow-off. The (joint-) statistics of mixture fraction and reaction progress variable are subsequently analysed with the covariance of the two variables used to evaluate the assumption of statistical independence. Results show that the current approach is able to reproduce the near-field features of both homogeneous and inhomogeneous jet flames. The latter leads to a stratified premixed flame that evolves to diffusion-dominated combustion as the influence of the pilot fades. In agreement with measured data, the mixture fraction variance is strongly affected by the near-field combustion mode and the misalignment with the reaction progress variable variance is obvious in the stratified premixed flame. It is shown that the covariance of the mixture fraction and reaction progress variable is influenced by turbulence-chemistry interactions and that, generally, the two parameters remain strongly correlated with the consequence that the assumption of statistical independence is implausible.

Journal article

Tian L, Lindstedt, 2017, The impact of dilatation, scrambling and pressure transport in turbulent premixed flames, Combustion Theory and Modelling, Vol: 21, Pages: 1114-1147, ISSN: 1741-3559

Premixed turbulent flames feature strong interactions between chemical reactions and turbulence that affect scalar and turbulence statistics. The focus of the present work is on clarifying the impact of pressure dilatation/flamelet scrambling effects with a comprehensive second-moment closure used for evaluation purposes. Model extensions that take into account flamelet orientation and molecular diffusion are derived. Isothermal pressure transport is included with an additional variable density contribution derived for the flamelet regime of combustion. Full closure is assessed by comparisons with Direct Numerical Simulations (DNSs) of statistically ‘steady’ fully developed premixed turbulent planar flames at different expansion ratios. Subsequently, the prediction of lean premixed turbulent methane–air flames featuring fractal grid generated turbulence in an opposed jet geometry is considered. The overall agreement shows that ‘dilatation’ effects contribute to counter-gradient transport and can also increase the turbulent kinetic energy significantly. Levels of anisotropy are broadly consistent with the DNS data and key aspects of opposed jet flames are well predicted. However, it is also shown that complications arise due to interactions between the imposed pressure gradient and combustion and that redistribution is affected along with the scalar flux at the leading edge. The latter is strongly affected by the reaction rate closure and, potentially, by pressure transport. Overall, the derived models offer significant improvements and can readily be applied to the modelling of premixed turbulent flames at practical rates of heat release.

Journal article

Tian L, Lindstedt RP, 2017, Transported PDF modelling and analysis of partially premixed flames, 8th European Combustion Meeting, Publisher: The Combustion Institute

A hybrid finite volume – transported joint probability density function (FV/JPDF) method is used to model piloted flames with inhomogeneous inlets. The flames were experimentally investigated using a retractable central tube within the main burner to control the degree of mixing at the exit. A five-gas (C2H2, H2, CO2, N2, air) co–flow pilot located outside the burner was used to match the composition and adiabatic temperature of a stoichiometric methane/air flame. The applied hybrid method features a flow field calculation using a time-dependent finite-volume based method closed at the second-moment level with the scalar field obtained at the joint-scalar (JPDF) level. The current methodology is applicable to both premixed combustion and diffusion-dominated regions without assumption regarding the inclusion of the chemistry. Results show that the current method can accurately capture the stratified premixed flame mode near the burner exit as well as the diffusion-dominated flame far downstream. The transition between the combustion modes occurs around ten tube diameters downstream of the burner exit and it is observed that the flame structure is very sensitive to the prediction of the flow field in this region.

Conference paper

Tian L, Chen LH, Chen Q, Zhong FQ, Chang XYet al., 2015, Engine performance analysis and optimization of dual-mode scramjetwith varied inlet conditions, Acta Mechanica Sinica, ISSN: 1614-3116

Journal article

Tian L, Lindstedt, 2015, Redistribution and Dilatation Effects in Turbulent Premixed Opposed Jet Flames, the 7th European Combustion Meeting

Conference paper

Tian L, Chen L, Chen Q, Li F, Chang Xet al., 2014, Quasi-One-Dimensional Multimodes Analysis for Dual-Mode Scramjet, JOURNAL OF PROPULSION AND POWER, Vol: 30, Pages: 1559-1567, ISSN: 0748-4658

Journal article

Tian L, CHEN L, CHEN Q, LI F, CHANG Xet al., 2012, Modeling and Measurements of Heat Release Distributions in Dual-mode Scramjet Combustor, 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Publisher: American Institute of Aeronautics and Astronautics

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00954360&limit=30&person=true