Imperial College London

DrMartinArcher

Faculty of Natural SciencesDepartment of Physics

Stephen Hawking Fellow (Advanced Research Fellow)
 
 
 
//

Contact

 

+44 (0)20 7594 7661m.archer10 Website

 
 
//

Location

 

6M58Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

62 results found

Archer M, Hartinger MD, Rastatter L, Southwood D, Heyns M, Eggington J, Wright A, Plaschke F, Shi Xet al., 2023, Auroral, ionospheric and ground magnetic signatures of magnetopause surface modes, Journal of Geophysical Research: Space Physics, Vol: 128, Pages: 1-25, ISSN: 2169-9380

Surface waves on Earth's magnetopause have a controlling effect upon global magnetospheric dynamics. Since spacecraft provide sparse in situ observation points, remote sensing these modes using ground-based instruments in the polar regions is desirable. However, many open conceptual questions on the expected signatures remain. Therefore, we provide predictions of key qualitative features expected in auroral, ionospheric, and ground magnetic observations through both magnetohydrodynamic theory and a global coupled magnetosphere-ionosphere simulation of a magnetopause surface eigenmode. These show monochromatic oscillatory field-aligned currents (FACs), due to both the surface mode and its non-resonant Alfvén coupling, are present throughout the magnetosphere. The currents peak in amplitude at the equatorward edge of the magnetopause boundary layer, not the open-closed boundary as previously thought. They also exhibit slow poleward phase motion rather than being purely evanescent. We suggest the upward FAC perturbations may result in periodic auroral brightenings. In the ionosphere, convection vortices circulate the poleward moving FAC structures. Finally, surface mode signals are predicted in the ground magnetic field, with ionospheric Hall currents rotating perturbations by approximately (but not exactly) 90° compared to the magnetosphere. Thus typical dayside magnetopause surface modes should be strongest in the East-West ground magnetic field component. Overall, all ground-based signatures of the magnetopause surface mode are predicted to have the same frequency across L-shells, amplitudes that maximize near the magnetopause's equatorward edge, and larger latitudinal scales than for field line resonance. Implications in terms of ionospheric Joule heating and geomagnetically induced currents are discussed.

Journal article

Archer MO, Hartinger MD, Rastatter L, Southwood DJ, Heyns M, Eggington JWB, Wright AN, Plaschke F, Shi Xet al., 2022, Auroral, Ionospheric and Ground Magnetic Signatures of Magnetopause Surface Modes

Journal article

Archer M, Cottingham M, Hartinger M, Shi X, Coyle S, Hill E, Fox M, Masongsong Eet al., 2022, Listening to the magnetosphere: How best to make ULF waves audible, Frontiers in Astronomy and Space Sciences, Vol: 9, ISSN: 2296-987X

Observations across the heliosphere typically rely on in situ spacecraft observations producing time-series data. While often this data is analysed visually, it lends itself more naturally to our sense of sound. The simplest method of converting oscillatory data into audible sound is audification—a one-to-one mapping of data samples to audio samples—which has the benefit that no information is lost, thus is a true representation of the original data. However, audification can make some magnetospheric ULF waves observations pass by too quickly for someone to realistically be able to listen to effectively. For this reason, we detail various existing audio time scale modification techniques developed for music, applying these to ULF wave observations by spacecraft and exploring how they affect the properties of the resulting audio. Through a public dialogue we arrive at recommendations for ULF wave researchers on rendering these waves audible and discuss the scientific and educational possibilities of these new methods.

Journal article

Archer M, Waters C, Dewan S, Foster S, Portas Aet al., 2022, GC Insights: Space sector careers resources in the UK need a greater diversity of roles, Geoscience Communication, Vol: 5, Pages: 119-123, ISSN: 2569-7110

Educational research highlights that improved careers education is needed to increase participation in science, technology, engineering, and mathematics (STEM). Current UK careers resources concerning the space sector, however, are found to perhaps not best reflect the diversity of roles present and may in fact perpetuate misconceptions about the usefulness of science. We, therefore, compile a more diverse set of space-related jobs, which will be used in the development of a new space careers resource.

Journal article

Archer M, Waters C, Dewan S, Foster S, Portas Aet al., 2022, Developing a new space sector careers resource based on educational research recommendations

<jats:p>&amp;lt;p&amp;gt;Educational research shows participation issues across Science Technology Engineering and Mathematics (STEM) are due to whether students see these fields and their potential career opportunities as for &amp;amp;#8220;people like me&amp;amp;#8221;. These perceptions form early and remain relatively stable with age, which has led to recommendations for increased provision and quality of careers education/engagement at both primary and secondary levels. Space-related roles should be rife for inclusion in careers education resources. However, we find that current UK careers resources concerning the space sector do not perhaps best reflect the diversity of roles present and may in fact perpetuate misconceptions about the usefulness of science. We present the development process of a new space careers resource, detailing how we have attempted to improve the diversity of space-related careers highlighted as well as addressing the key issues and recommendations raised by recent educational research.&amp;lt;/p&amp;gt;</jats:p>

Journal article

Archer M, Southwood D, Hartinger M, Rastaetter L, Wright Aet al., 2022, How a realistic magnetosphere alters the polarizations of surface, fast magnetosonic, and Alfvén waves, Journal of Geophysical Research: Space Physics, Vol: 127, ISSN: 2169-9380

System-scale magnetohydrodynamic (MHD) waves within Earth's magnetosphere are often understood theoretically using box models. While these have been highly instructive in understanding many fundamental features of the various wave modes present, they neglect the complexities of geospace such as the inhomogeneities and curvilinear geometries present. Here, we show global MHD simulations of resonant waves impulsively excited by a solar wind pressure pulse. Although many aspects of the surface, fast magnetosonic (cavity/waveguide), and Alfvén modes present agree with the box and axially symmetric dipole models, we find some predictions for large-scale waves are significantly altered in a realistic magnetosphere. The radial ordering of fast mode turning points and Alfvén resonant locations may be reversed even with monotonic wave speeds. Additional nodes along field lines that are not present in the displacement/velocity occur in both the perpendicular and compressional components of the magnetic field. Close to the magnetopause, the perpendicular oscillations of the magnetic field have the opposite handedness to the velocity. Finally, widely used detection techniques for standing waves, both across and along the field, can fail to identify their presence. We explain how all these features arise from the MHD equations when accounting for a non-uniform background field and propose modified methods that might be applied to spacecraft observations.

Journal article

Archer M, Waters C, Dewan S, Foster S, Portas Aet al., 2022, GC Insights: Space sector careers resources need a greater diversity of roles

<jats:p>Abstract. Educational research highlights that improved careers education is needed to increase participation in STEM. Current careers resources concerning the space sector, however, are found to perhaps not best reflect the diversity of roles present and may in fact perpetuate misconceptions about the usefulness of science. We, therefore, compile a more diverse set of space-related jobs, which will be used in the development of a new space careers resource. </jats:p>

Journal article

Archer M, Hartinger M, Plaschke F, Southwood D, Rastaetter Let al., 2021, Magnetopause ripples going against the flow form azimuthally stationary surface waves, Nature Communications, Vol: 12, Pages: 1-14, ISSN: 2041-1723

Surface waves process the turbulent disturbances which drive dynamics in many space, astrophysical and laboratory plasma systems, with the outer boundary of Earth’s magnetosphere, the magnetopause, providing an accessible environment to study them. Like waves on water, magnetopause surface waves are thought to travel in the direction of the driving solar wind, hence a paradigm in global magnetospheric dynamics of tailward propagation has been well-established. Here we show through multi-spacecraft observations, global simulations, and analytic theory that the lowest-frequency impulsively-excited magnetopause surface waves, with standing structure along the terrestrial magnetic field, propagate against the flow outside the boundary. Across a wide local time range (09–15h) the waves’ Poynting flux exactly balances the flow’s advective effect, leading to no net energy flux and thus stationary structure across the field also. Further down the equatorial flanks, however, advection dominates hence the waves travel downtail, seeding fluctuations at the resonant frequency which subsequently grow in amplitude via the Kelvin-Helmholtz instability and couple to magnetospheric body waves. This global response, contrary to the accepted paradigm, has implications on radiation belt, ionospheric, and auroral dynamics and potential applications to other dynamical systems.

Journal article

Desai R, Eastwood J, Horne R, Allison H, Allanson O, Watt C, Eggington J, Glauert S, Meredith N, Archer M, Staples F, Mejnertsen L, Tong J, Chittenden Jet al., 2021, Drift orbit bifurcations and cross-field transport in the outer radiation belt: global MHD and integrated test-particle simulations, Journal of Geophysical Research: Space Physics, Vol: 126, Pages: 1-14, ISSN: 2169-9380

Energetic particle fluxes in the outer magnetosphere present a significant challenge to modellingefforts as they can vary by orders of magnitude in response to solar wind driving conditions. In thisarticle, we demonstrate the ability to propagate test particles through global MHD simulations to ahigh level of precision and use this to map the cross-field radial transport associated with relativisticelectrons undergoing drift orbit bifurcations (DOBs). The simulations predict DOBs primarily occurwithin an Earth radius of the magnetopause loss cone and appears significantly different for southwardand northward interplanetary magnetic field orientations. The changes to the second invariant areshown to manifest as a dropout in particle fluxes with pitch angles close to 90â—¦and indicate DOBsare a cause of butterfly pitch angle distributions within the night-time sector. The convective electricfield, not included in previous DOB studies, is found to have a significant effect on the resultant longterm transport, and losses to the magnetopause and atmosphere are identified as a potential methodfor incorporating DOBs within Fokker-Planck transport models.

Journal article

Desai RT, Freeman M, Eastwood J, Eggington J, Archer M, Shprits Y, Meredith N, Staples F, Ian R, Hietala H, Mejnertsen L, Chittenden J, Horne Ret al., 2021, Interplanetary shock-induced magnetopause motion: Comparison between theory and global magnetohydrodynamic simulations, Geophysical Research Letters, Vol: 48, Pages: 1-11, ISSN: 0094-8276

The magnetopause marks the outer edge of the Earth’s magnetosphere and a distinct boundary between solar wind and magnetospheric plasma populations. In this letter, we use global magneto-hydrodynamic simulations to examine the response of the terrestrial magnetopause to fast-forward interplanetary shocks of various strengths and compare to theoretical predictions. The theory and simulations indicate the magnetopause response can be characterised by three distinct phases; an initial acceleration as inertial forces are overcome, a rapid compressive phase comprising the majority of the distance travelled, and large-scale damped oscillations with amplitudes of the order of an Earth radius. The two approaches agree in predicting subsolar magnetopause oscillations with frequencies2–13 mHz but the simulations notably predict larger amplitudes and weaker damping rates. This phenomenon is of high relevance to space weather forecasting and provides a possible explanation for magnetopause oscillations observed following the large interplanetary shocks of August 1972 and March 1991.

Journal article

Archer MO, DeWitt J, Thorley C, Keenan Oet al., 2021, Evaluating participants' experience of extended interaction with cutting-edge physics research through the PRiSE “research in schools” programme, Geoscience Communication, Vol: 4, Pages: 147-168, ISSN: 2569-7110

Physics in schools is distinctly different from, and struggles to capture the excitement of, university research-level work. Initiatives where students engage in independent research linked to cutting-edge physics within their school over several months might help mitigate this, potentially facilitating the uptake of science in higher education. However, how such initiatives are best supported remains unclear and understudied. This paper evaluates a provision framework, Physics Research in School Environments (PRiSE), using survey data from participating 14–18-year-old students and their teachers to understand their experience of the programme. The results show that PRiSE appears to provide much more positive experiences than typical university outreach initiatives due to the nature of the opportunities afforded over several months, which schools would not be able to provide without external input. The intensive support offered is deemed necessary, with all elements appearing equally important. Based on additional feedback from independent researchers and engagement professionals, we also suggest the framework could be adopted at other institutions and applied to their own areas of scientific research, something which has already started to occur.

Journal article

Archer MO, DeWitt J, 2021, “Thanks for helping me find my enthusiasm for physics”: the lasting impacts “research in schools” projects can have on students, teachers, and schools, Geoscience Communication, Vol: 4, Pages: 169-188, ISSN: 2569-7110

Using 6 years of evaluation data, we assess the medium- and long-term impacts upon a diverse range of students, teachers, and schools from participating in a programme of protracted university-mentored projects based on cutting-edge space science, astronomy, and particle physics research. After having completed their 6-month-long projects, the 14–18-year-old school students report having substantially increased in confidence relating to relevant scientific topics and methods as well as having developed numerous skills, outcomes which are corroborated by teachers. There is evidence that the projects helped increase students' aspirations towards physics, whereas science aspirations (generally high to begin with) were typically maintained or confirmed through their involvement. Longitudinal evaluation 3 years later has revealed that these projects have been lasting experiences for students which they have benefited from and drawn upon in their subsequent university education. Data on students' destinations suggest that their involvement in research projects has made them more likely to undertake physics and STEM degrees than would otherwise be expected. Cases of co-created novel physics research resulting from Physics Research in School Environments (PRiSE) has also seemed to have a powerful effect, not only on the student co-authors, but also participating students from other schools. Teachers have also been positively affected through participating, with the programme having influenced their own knowledge, skills, and pedagogy, as well as having advantageous effects felt across their wider schools. These impacts suggest that similar “research in schools” initiatives may have a role to play in aiding the increased uptake and diversity of physics and/or STEM in higher education as well as meaningfully enhancing the STEM environment within schools.

Journal article

Archer MO, 2021, Schools of all backgrounds can do physics research – on the accessibility and equity of the Physics Research in School Environments (PRiSE) approach to independent research projects, Geoscience Communication, Vol: 4, Pages: 189-208, ISSN: 2569-7110

Societal biases are a major issue in school students' access to and interaction with science. School engagement programmes in science from universities, like independent research projects, which could try and tackle these problems are, however, often inequitable. We evaluate these concerns applied to one such programme, Physics Research in School Environments (PRiSE), which features projects in space science, astronomy, and particle physics. Comparing the schools involved with PRiSE to those of other similar schemes and UK national statistics, we find that PRiSE has engaged a much more diverse set of schools with significantly more disadvantaged groups than is typical. While drop-off occurs within the protracted programme, we find no evidence of systematic biases present. The majority of schools that complete projects return for multiple years with the programme, with this repeated buy-in from schools again being unpatterned by typical societal inequalities. Therefore, a school's ability to succeed in independent research projects appears independent of background within the PRiSE framework. Qualitative feedback from teachers shows that the diversity and equity of the programme, which they attribute to the level of support offered through PRiSE's framework, is valued, and they have highlighted further ways of making the projects potentially even more accessible. Researcher involvement, uncommon in many other programmes, along with teacher engagement and communication are found to be key elements to success in independent research projects overall.

Journal article

Archer MO, Day N, Barnes S, 2021, Demonstrating change from a drop-in space soundscape exhibit by using graffiti walls both before and after, Geoscience Communication, Vol: 4, Pages: 57-67, ISSN: 2569-7110

Impact evaluation in public engagement necessarily requires measuring change. However, this is extremely challenging for drop-in activities due to their very nature. We present a novel method of impact evaluation which integrates graffiti walls into the experience both before and after the main drop-in activity. The activity in question was a soundscape exhibit, where young families experienced the usually inaudible sounds of near-Earth space in an immersive and accessible way. We apply two analysis techniques to the captured before and after data – quantitative linguistics and thematic analysis. These analyses reveal significant changes in participants' responses after the activity compared to before, namely an increased diversity in language used to describe space and altered conceptions of what space is like. The results demonstrate that the soundscape was surprisingly effective at innately communicating key aspects of the underlying science simply through the act of listening. The impacts also highlight the power of sonification in stimulating public engagement, which, through reflection, can lead to altered associations, perceptions, and understanding. Therefore, we show that this novel approach to drop-in activity evaluation, using graffiti walls both before and after the activity and applying rigorous analysis to this data, has the power to capture change and, thus, have a short-term impact. We suggest that commonly used evaluation tools suitable for drop-in activities, such as graffiti walls, should be integrated both before and after the main activity in general, rather than only using them afterwards as is typically the case.

Journal article

Archer M, DeWitt J, Davenport C, Keenan O, Coghill L, Christodoulou A, Durbin S, Campbell H, Hou Let al., 2021, Going beyond the one-off: How can STEM engagement programmes with young people have real lasting impact?, Research for All, Vol: 5, Pages: 67-85, ISSN: 2399-8121

A major focus in the STEM public engagement sector concerns engaging withyoung people, typically through schools. The aims of these interventions areoften to positively affect students' aspirations towards continuing STEMeducation and ultimately into STEM-related careers. Most schools engagementactivities take the form of short one-off interventions that, while able toachieve positive outcomes, are limited in the extent to which they can havelasting impacts on aspirations. In this paper we discuss various differentemerging programmes of repeated interventions with young people, assessing whatimpacts can realistically be expected. Short series of interventions appearalso to suffer some limitations in the types of impacts achievable. However,deeper programmes that interact with both young people and those that influencethem over significant periods of time (months to years) seem to be moreeffective in influencing aspirations. We discuss how developing a Theory ofChange and considering young people's wider learning ecologies are required inenabling lasting impacts in a range of areas. Finally, we raise severalsector-wide challenges to implementing and evaluating these emergingapproaches.

Journal article

Archer M, 2021, Comment on gc-2020-35, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC5, Publisher: Copernicus GmbH

Other

Archer M, 2020, Further reply to RC1, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC3, Publisher: Copernicus GmbH

Other

Archer M, 2020, Thank you, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC3, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC4, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC2, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC2, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC2, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to RC1, Publisher: Copernicus GmbH

Other

Archer M, 2020, Reply to abstract review, Publisher: Copernicus GmbH

Other

, 2020, Reply to RC1, Publisher: Copernicus GmbH

Other

Archer MO, Day N, Barnes S, 2020, Demonstrating change from a drop-in engagement activity through pre- and post- graffiti walls: Quantitative linguistics and thematic analysis applied to a space soundscape exhibit

<jats:p>Abstract. Impact evaluation in public engagement necessarily requires measuring change, however this is extremely challenging for drop-in activities due to their very nature. We present a soundscape exhibit, where young families experienced the usually inaudible sounds of near-Earth space, which used a novel method of evaluation integrating pre- and post- graffiti walls into the activity. We apply two analysis techniques to the captured before and after data: 1) Quantitative linguistics – Applying Zipf's law (the power law statistics of words) reveals an increased diversity of language concerning space afterwards, highlighting participants engaged with and reflected upon the sounds; 2) Thematic analysis – Finding and grouping patterns in the qualitative data shows altered conceptions of space around aspects of sound, dynamism, emptiness and electricity, areas highly relevant to the underlying space plasma physics of the sonified data. Therefore, we demonstrate that this novel approach to drop-in activity evaluation has the power to capture change from before to after, and thus short-term impact – specifically in this case showing the power of data sonification in innately communicating science. We suggest the method could be adopted by others in their drop-in engagement activities more broadly. </jats:p>

Working paper

Archer M, 2020, Teacher development strategy in PRiSE, Publisher: Copernicus GmbH

Other

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00355487&limit=30&person=true