Publications
40 results found
Aunedi M, Yliruka M, Dehghan S, et al., 2022, Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen, Renewable Energy, Vol: 194, Pages: 1261-1276, ISSN: 0960-1481
Delivering low-carbon heat will require the substitution of natural gas with low-carbon alternatives such as electricity and hydrogen. The objective of this paper is to develop a method to soft-link two advanced, investment-optimising energy system models, RTN (Resource-Technology Network) and WeSIM (Whole-electricity System Investment Model), in order to assess cost-efficient heat decarbonisation pathways for the UK while utilising the respective strengths of the two models. The linking procedure included passing on hourly electricity prices from WeSIM as input to RTN, and returning capacities and locations of hydrogen generation and shares of electricity and hydrogen in heat supply from RTN to WeSIM. The outputs demonstrate that soft-linking can improve the quality of the solution, while providing useful insights into the cost-efficient pathways for zero-carbon heating. Quantitative results point to the cost-effectiveness of using a mix of electricity and hydrogen technologies for delivering zero-carbon heat, also demonstrating a high level of interaction between electricity and hydrogen infrastructure in a zero-carbon system. Hydrogen from gas reforming with carbon capture and storage can play a significant role in the medium term, while remaining a cost-efficient option for supplying peak heat demand in the longer term, with the bulk of heat demand being supplied by electric heat pumps.
Olympios AV, Aunedi M, Mersch M, et al., 2022, Delivering net-zero carbon heat: technoeconomic and whole-system comparisons of domestic electricity- and hydrogen-driven technologies in the UK, Energy Conversion and Management, Vol: 262, ISSN: 0196-8904
Proposed sustainable transition pathways for moving away from natural gas in domestic heating focus on two main energy vectors: electricity and hydrogen. Electrification would be implemented by using vapour-compression heat pumps, which are currently experiencing market growth in many countries. On the other hand, hydrogen could substitute natural gas in boilers or be used in thermally–driven absorption heat pumps. In this paper, a consistent thermodynamic and economic methodology is developed to assess the competitiveness of these options. The three technologies, along with the option of district heating, are for the first time compared for different weather/ambient conditions and fuel-price scenarios, first from a homeowner’s and then from a whole-energy system perspective. For the former, two-dimensional decision maps are generated to identify the most cost-effective technologies for different combinations of fuel prices. It is shown that, in the UK, hydrogen technologies are economically favourable if hydrogen is supplied to domestic end-users at a price below half of the electricity price. Otherwise, electrification and the use of conventional electric heat pumps will be preferred. From a whole-energy system perspective, the total system cost per household (which accounts for upstream generation and storage, as well as technology investment, installation and maintenance) associated with electric heat pumps varies between 790 and 880 £/year for different scenarios, making it the least-cost decarbonisation pathway. If hydrogen is produced by electrolysis, the total system cost associated with hydrogen technologies is notably higher, varying between 1410 and 1880 £/year. However, this total system cost drops to 1150 £/year with hydrogen produced cost-effectively by methane reforming and carbon capture and storage, thus reducing the gap between electricity- and hydrogen-driven technologies.
Al Kindi A, Aunedi M, Pantaleo A, et al., 2022, Thermo-economic assessment of flexible nuclear power plants in future low-carbon electricity systems: Role of thermal energy storage, Energy Conversion and Management, Vol: 258, ISSN: 0196-8904
The increasing penetration of intermittent renewable power will require additional flexibility from conventional plants, in order to follow the fluctuating renewable output while guaranteeing security of energy supply. In this context, coupling nuclear reactors with thermal energy storage could ensure a more continuous and efficient operation of nuclear power plants, while at other times allowing their operation to become more flexible and cost-effective. This study proposes options for upgrading a 1610-MWel nuclear power plant with the addition of a thermal energy storage system and secondary power generators. The total whole-system benefits of operating the proposed configuration are quantified for several scenarios in the context of the UK’s national electricity system using a whole-system model that minimises the total system costs. The proposed configuration allows the plant to generate up to 2130 MWel during peak load, representing an increase of 32% in nominal rated power. This 520 MWel of additional power is generated by secondary steam Rankine cycle systems (i.e., with optimised cycle thermal efficiencies of 24% and 30%) and by utilising thermal energy storage tanks with a total heat storage capacity of 1950 MWhth. Replacing conventional with flexible nuclear power plants is found to generate whole-system cost savings between £24.3m/yr and £88.9m/yr, with the highest benefit achieved when stored heat is fully discharged in 0.5 h. At an estimated cost of added flexibility of £42.7m/yr, the proposed flexibility upgrades to such nuclear power plants appears to be economically justified with net system benefits ranging from £4.0m/yr to £31.6m/yr for the examined low-carbon scenarios, provided that the number of flexible nuclear plants in the system is small. This suggests that the value of this technology is system dependent, and that system characteristics should be adequately considered when evaluating the benefits of diffe
Borozan S, Giannelos S, Aunedi M, et al., 2022, Option Value of EV Smart Charging Concepts in Transmission Expansion Planning under Uncertainty, 21st IEEE Mediterranean Electrotechnical Conference (IEEE MELECON), Publisher: IEEE, Pages: 63-68, ISSN: 2158-8481
Aunedi M, Strbac G, 2022, System Benefits of Residential Heat Storage for Electrified Heating Sector in the United Kingdom
Electrification of heat is a key element of the UK's decarbonisation strategy, however it risks significantly increasing network peak demand. Thermal energy storage (TES) provides an opportunity to introduce flexibility into the system and allow load to be shifted to off-peak periods, delivering a range of benefits in the decarbonised electricity system. This paper quantifies system-wide benefits of installing heat batteries alongside residential heat pump systems, using a whole-electricity system model. System value for a high uptake of TES is found to be between £1.5-1.7bn/in 2035 and £1.1-2.3bn/yr in 2050. Most of the system value is derived from savings in generation investment cost and reduced distribution network cost. Customer-level benefits in the long term are estimated at between £200 and £300 per customer annually, with highest values observed at low TES uptake levels (10%).
Al Kindi A, Aunedi M, Pantaleo A, et al., 2021, Thermo-economic assessment of flexible nuclear power plants in the UK’s future low-carbon electricity system: role of thermal energy storage, 16th Conference on Sustainable Development of Energy, Water and Environment Systems, Publisher: SDEWES
Nuclear power plants are commonly operated as baseload units due to their low variable costs, high investment costs and limited ability to modulate their output. The increasing penetration of intermittent renewable power will require additional flexibility from conventional generation units, in order to follow the fluctuating renewable output while guaranteeing security of energy supply. In this context, coupling nuclear reactors with thermal energy storage could ensure a more continuous and efficient operation of nuclear power plants, while at other times allowing their operation to become more flexible and cost-effective. This study considers options for upgrading a 1610-MWel nuclear power plant with the addition of a thermal energy storage system and secondary power generators. The analysed configuration allows the plant to generate up to 2130 MWel during peak load, representing an increase of 32% in nominal rated power. The gross whole-system benefits of operating the proposed configuration are quantified over several scenarios for the UK’s low-carbon electricity system. Replacing conventional with flexible nuclear plant configuration is found to generate system cost savings that are between £24.3m/yr and £88.9m/yr, with the highest benefit achieved when stored heat is fully discharged in 0.5 hours (the default case is 1 hour). At an estimated cost of added flexibility of £42.7m/yr, the proposed flexibility upgrade to a nuclear power plant appears to be economically justified for a wide range of low-carbon scenarios, provided that the number of flexible nuclear units in the system is small.
Aunedi M, Wills K, Green T, et al., 2021, Net-zero GB electricity: cost-optimal generation and storage mix, Great Britain's electricity generation capacity mix for net-zero carbon emissions, Publisher: Energy Futures Lab
Aunedi M, Pantaleo AM, Kuriyan K, et al., 2020, Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems, Applied Energy, Vol: 276, Pages: 1-18, ISSN: 0306-2619
Decarbonisation of the heating and cooling sector is critical for achieving long-term energy and climate change objectives. Closer integration between heating/cooling and electricity systems can provide additional flexibility required to support the integration of variable renewables and other low-carbon energy sources. This paper proposes a framework for identifying cost-efficient solutions for supplying district heating systems within both operation and investment timescales, while considering local and national-level interactions between heat and electricity infrastructures. The proposed optimisation model minimises the levelised cost of a portfolio of heating technologies, and in particular Combined Heat and Power (CHP) and polygeneration systems, centralised heat pumps (HPs), centralised boilers and thermal energy storage (TES). A number of illustrative case studies are presented, quantifying the impact of renewable penetration, electricity price volatility, local grid constraints and local emission targets on optimal planning and operation of heat production assets. The sensitivity analysis demonstrates that the cost-optimal TES capacity could increase by 41–134% in order to manage a constraint in the local electricity grid, while in systems with higher RES penetration reflected in higher electricity price volatility it may be optimal to increase the TES capacity by 50–66% compared to constant prices, allowing centralised electric HP technologies to divert excess electricity produced by intermittent renewable generators to the heating sector. This confirms the importance of reflecting the whole-system value of heating technologies in the underlying cost-benefit analysis of heat networks.
Strbac G, Pudjianto D, Aunedi M, et al., 2020, Role and value of flexibility in facilitating cost-effective energy system decarbonisation, Progress in Energy, Vol: 2
Decarbonisation of the electricity system requires significant and continued investment in low-carbon energy sources and electrification of the heat and transport sectors. With diminishing output and shorter operating hours of conventional large-scale fossil fuel generators, there is a growing need and opportunity for other emerging technologies to provide flexibility in the context of grid support, balancing, security services, and investment options to support a cost-effective transition to a lower-carbon energy system. This article summarises the key findings from a range of studies investigating the potential benefits and challenges associated with the future low-carbon energy system. The key challenges associated with balancing local, national and regional objectives to minimise the overall cost of decarbonising the future energy system are also discussed. Furthermore, the paper highlights the importance of cross-energy vector flexibility, and coordination across electricity, heat, and gas systems which is critical for shaping the future low-carbon energy systems. Although most of the case studies presented in this article are based on the UK, and to some extent the EU decarbonisation pathways, the overall conclusions regarding the value of flexibility are relevant for the global energy transition.
Zeljko M, Aunedi M, Slipac G, et al., 2020, Applications of Wien Automatic System Planning (WASP) model to non-standard power system expansion problems, Energies, Vol: 13, ISSN: 1996-1073
This paper presents several applications of Wien Automatic System Planning (WASP) tool to address specific modeling challenges encountered in power system expansion planning problems. Although WASP has been used by power system planners around the world for many decades, its standard formulation does not allow the user to explicitly model many situations that can occur in realistic power systems. Examples of such situations include dual-fuel plants, options for electricity exports, energy exchange agreements with neighboring systems, and considering large generating units as candidates in relatively small-size systems. A number of alternative modeling solutions are proposed in the paper based on the authors’ long-term experience in carrying out generation expansion studies for electricity systems of various types and sizes. These solutions demonstrate the flexibility of using WASP to model atypical features of power systems.
Georgiou S, Aunedi M, Strbac G, et al., 2020, On the value of liquid-air and Pumped-Thermal Electricity Storage systems in low-carbon electricity systems, Energy, Vol: 193, ISSN: 0360-5442
We consider two medium-to-large scale thermomechanical electricity storage technologies currently under development, namely ‘Liquid-Air Energy Storage’ (LAES) and ‘Pumped-Thermal Electricity Storage’ (PTES). Consistent thermodynamic models and costing methods based on a unified methodology for the two systems from previous work are presented and used with the objective of integrating the characteristics of the technologies into a whole-electricity system assessment model and assessing their system-level value in various scenarios for system decarbonization. It is found that the value of storage depends on the cumulative installed capacity of storage in the system, with storage technologies providing greater marginal benefits at low penetrations. The system value of PTES was found to be slightly higher than that of LAES, driven by a higher storage duration and efficiency, although these results must be seen in light of the uncertainty in the (as yet, not demonstrated) performance of key PTES components, namely the reciprocating-piston compressors and expanders. At the same time, PTES was also found to have a higher power capital cost. The results indicate that the complexity of the decarbonization challenge makes it difficult to identify clearly a ‘best’ technology and suggest that the uptake of either technology can provide significant system-level benefits.
Meenakumar P, Aunedi M, Strbac G, 2020, Optimal Business Case for Provision of Grid Services through EVs with V2G Capabilities, 15th International Conference on Ecological Vehicles and Renewable Energies (EVER), Publisher: IEEE
O'Malley C, Aunedi M, Teng F, et al., 2020, Value of Fleet Vehicle to Grid in Providing Transmission System Operator Services, 15th International Conference on Ecological Vehicles and Renewable Energies (EVER), Publisher: IEEE
Aunedi M, Strbac G, 2020, Whole-system Benefits of Vehicle-to-Grid Services from Electric Vehicle Fleets, 15th International Conference on Ecological Vehicles and Renewable Energies (EVER), Publisher: IEEE
- Author Web Link
- Cite
- Citations: 2
Aunedi M, Kuriyan K, Pantaleo AM, et al., 2019, Multi-scale modelling of interactions between heat and electricity networks in low-carbon energy systems, 14th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES Conference, Publisher: SDEWES
Decarbonisation of the heating and cooling sector is critical for achieving long-term energy and climate change objectives. Closer integration between heating/cooling and electricity systems can provide additional flexibility required to support the integration of variable renewables and other low-carbon energy sources. This paper proposes a framework for identifying cost-efficient solutions for supplying district heating systems within both operation and investment timescales, while considering local and national-level interactions between heat and electricity infrastructures. The proposed approach cost-optimises the portfolio of heating technologies, including Combined Heat and Power (CHP) and polygeneration systems, large-scale heat pumps (HPs), gas boilers and thermal energy storage (TES). It is implemented as a mixed-integer linear programming (MILP) optimisation model that minimises net cost of heat supply, taking into account investment and operation cost of heat supply and storage options as well as the impact of local and wider interactions with the electricity system.
Sun M, Djapic P, Aunedi M, et al., 2019, Benefits of smart control of hybrid heat pumps: an analysis of field trial data, Applied Energy, Vol: 247, Pages: 525-536, ISSN: 0306-2619
Smart hybrid heat pumps have the capability to perform smart switching between electricity and gas by employing a fully-optimized control technology with predictive demand-side management to automatically use the most cost-effective heating mode across time. This enables a mechanism for delivering flexible demand-side response in a domestic setting. This paper conducts a comprehensive analysis of the fine-grained data collected during the world’s first sizable field trial of smart hybrid heat pumps to present the benefits of the smart control technology. More specifically, a novel flexibility quantification framework is proposed to estimate the capability of heat pump demand shifting based on preheating. Within the proposed framework, accurate estimation of baseline heat demand during the days with interventions is fundamentally critical for understanding the effectiveness of smart control. Furthermore, diversity of heat pump demand is quantified across different numbers of households as an important input into electricity distribution network planning. Finally, the observed values of the Coefficient of Performance (COP) have been analyzed to demonstrate that the smart control can optimize the heat pump operation while taking into account a variety of parameters including the heat pump output water temperature, therefore delivering higher average COP values by maximizing the operating efficiency of the heat pump. Finally, the results of the whole-system assessment of smart hybrid heat pumps demonstrate that the system value of smart control is between 2.1 and 5.3 £ bn/year.
Strbac G, Pudjianto D, Aunedi M, et al., 2019, Cost-effective decarbonization in a decentralized market the benefits of using flexible technologies and resources, IEEE Power and Energy Magazine, Vol: 17, Pages: 25-36, ISSN: 1540-7977
Georgiou S, Aunedi M, Strbac G, et al., 2018, Application of liquid-air and pumped-thermal electricity storage systems in low-carbon electricity systems, Heat Powered Cycles - HPC-2018
In this study, we considertwo medium-to large-scale electricity storage systems currently under development, namely ‘Liquid-Air Energy Storage’ (LAES) and ‘Pumped-Thermal Electricity Storage’ (PTES). Consistent thermodynamic models and costing methodologies for the twosystems are presented,with the objective of integrating the characteristics of these technologies intoa whole-electricity system assessment model,andassessingtheirsystem-levelvalue in different scenarios for power system decarbonisation.It is found that the value of storage variesgreatlydepending on the cumulative installed capacity of storage in the electrical system, withthe storage technologies providinggreater marginal benefits at low penetrations. Two carbon target scenarios showed similar results, with a limited effect of the carbon target on the system value of storage (althoughit is noted thatthis may change for even more ambitious carbon targets). On the other hand, the location and installed capacity of storage plants isfound to have a significantimpact on the system value and acceptable cost of thesetechnologies. The whole-system value of PTES was foundto be slightly higher than that of LAES, driven by a higher storage duration and efficiency,however, due to the higher power capital cost of PTES, this becomes less attractive for implementation at lower volumes than LAES.
Teng F, Pudjianto D, Aunedi M, et al., 2018, Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe, Energies, Vol: 11, ISSN: 1996-1073
This paper analyses the impacts and benefits of the pumped storage plant (PSP) and its upgrade to variable speed on generation and transmission capacity requirements, capital costs, system operating costs and carbon emissions in the future European electricity system. The combination of a deterministic system planning tool, Whole-electricity System Investment Model (WeSIM), and a stochastic system operation optimisation tool, Advanced Stochastic Unit Commitment (ASUC), is used to analyse the whole-system value of PSP technology and to quantify the impact of European balancing market integration and other competing flexible technologies on the value of the PSP. Case studies on the Pan-European system demonstrate that PSPs can reduce the total system cost by up to €13 billion per annum by 2050 in a scenario with a high share of renewables. Upgrading the PSP to variable-speed drive enhances its long-term benefits by 10–20%. On the other hand, balancing market integration across Europe may potentially reduce the overall value of the variable-speed PSP, although the effect can vary across different European regions. The results also suggest that large-scale deployment of demand-side response (DSR) leads to a significant reduction in the value of PSPs, while the value of PSPs increases by circa 18% when the total European interconnection capacity is halved. The benefit of PSPs in reducing emissions is relatively negligible by 2030 but constitutes around 6–10% of total annual carbon emissions from the European power sector by 2050.
Teng F, Aunedi M, Strbac G, et al., 2018, Provision of ancillary services in future low-carbon UK electricity system, IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Publisher: IEEE, ISSN: 2165-4816
Integration of intermittent RES into the electricity system imposes a considerable demand for additional flexibility. This paper analyses the challenges on the provision of ancillary services and potential solutions from emerging flexible technologies (including flexible generation, energy storage, demand side response and interconnection) in the future UK electricity system. The results suggest that the cost of reserve and response services in 2030 may increase up to 1.23 B£ and 1.04 B£, respectively. Alternative flexible technologies have been demonstrated to play an important role in the provision of ancillary services, although the benefits vary among different technologies. Furthermore, these flexible technologies can also reduce carbon emission and hence the required amount of high-cost low-carbon generation to achieve the same carbon target.
Teng F, Aunedi M, Moreira R, et al., 2017, Business case for distributed energy storage, 24th International Conference & Exhibition on Electricity Distribution (CIRED), Pages: 1605-1608
© 2017 The Institution of Engineering and Technology. All rights reserved. This study presents the analysis carried out to quantify the value that distributed energy storage (ES) installation may deliver to its owner by simultaneously providing multiple services to a number of entities in the electricity sector. In this analysis, a full spectrum of services that ES may deliver are considered: energy arbitrage, balancing services, supporting low-carbon generation, network support, frequency regulation services, and capacity market. The results demonstrate that the net revenues from any single service would be difficult to justify the relatively high investment cost. Optimised provision of multiple services is therefore the key route for ES to make a profitable business case in the market. The potential synergies and conflicts between TSO and DNO services supplied by ES are also analysed.
Strbac G, Aunedi M, Konstantelos I, et al., 2017, Opportunities for Energy Storage: Assessing Whole-System Economic Benefits of Energy Storage in Future Electricity Systems, IEEE Power and Energy Magazine, ISSN: 1540-7977
Aunedi M, Pudjianto D, Strbac G, 2017, Calculating system integration costs of low-carbon generation technologies in future GB electricity system, 5th IET International Conference on Renewable Power Generation (RPG) 2016, Publisher: Institution of Engineering and Technology
System integration costs (SIC) of generation technologies, also referred to as system externalities, include various categories of additional costs that are incurred in the system in addition to the cost of building and operating the generation capacity that is added to the system. SIC may include increased balancing cost, cost of additional backup capacity, cost of reinforcing network infrastructure and the cost of maintaining system carbon emissions. In this paper we present a whole-system approach to quantifying the SIC and explore different approaches to calculating the relative SIC of a generation technology when compared to another technology. The results show that the SIC of low-carbon generation technologies will significantly depend on the composition of the generation mix, with higher penetrations of variable renewables giving rise to a higher SIC. Also, SIC will significantly depend on the deployment level of flexible options such as more flexible generation technologies, energy storage, demand side response or interconnection. The additional system cost driven by low-carbon technologies can provide a very useful input to inform the energy policy and support the selection of the low-carbon portfolio with the lowest total system cost.
Teng F, Aunedi M, Strbac G, 2015, Benefits of flexibility from smart electrified transportation and heating in the future UK electricity system, Applied Energy, Vol: 167, Pages: 420-431, ISSN: 1872-9118
This paper presents an advanced stochastic analytical framework to quantify the benefits of smart electric vehicles (EVs) and heat pumps (HPs) on the carbon emission and the integration cost of renewable energy sources (RES) in the future UK electricity system. The typical operating patterns of EVs/HPs as well as the potential flexibility to perform demand shifting and frequency response are sourced from recent UK trials. A comprehensive range of case studies across several future UK scenarios suggest that smart EVs/HPs could deliver measurable carbon reductions by enabling a more efficient operation of the electricity system, while at the same time making the integration of electrified transport and heating demand significantly less carbon intensive. The second set of case studies establish that smart EVs/HPs have significant potential to support cost-efficient RES integration by reducing: (a) RES balancing cost, (b) cost of required back-up generation capacity, and (c) cost of additional low-carbon capacity required to offset lower fuel efficiency and curtailed RES output while achieving the same emission target. Frequency response provision from EVs/HPs could significantly enhance both the carbon benefit and the RES integration benefit of smart EVs/HPs.
Teng F, Aunedi M, Pudjianto D, et al., 2015, Benefits of demand-side response in providing frequency response service in the future GB power system, Frontiers in Energy Research, Vol: 3, ISSN: 2296-598X
The demand for ancillary service is expected to increase significantly in the future Great Britain (GB) electricity system due to high penetration of wind. In particular, the need for frequency response, required to deal with sudden frequency drops following a loss of generator, will increase because of the limited inertia capability of wind plants. This paper quantifies the requirements for primary frequency response and analyses the benefits of frequency response provision from demand-side response (DSR). The results show dramatic changes in frequency response requirements driven by high penetration of wind. Case studies carried out by using an advanced stochastic generation scheduling model suggest that the provision of frequency response from DSR could greatly reduce the system operation cost, wind curtailment, and carbon emissions in the future GB system characterized by high penetration of wind. Furthermore, the results demonstrate that the benefit of DSR shows significant diurnal and seasonal variation, whereas an even more rapid (instant) delivery of frequency response from DSR could provide significant additional value. Our studies also indicate that the competing technologies to DSR, namely battery storage, and more flexible generation could potentially reduce its value by up to 35%, still leaving significant room to deploy DSR as frequency response provider.
Strbac G, Aunedi M, Papadaskalopoulos D, et al., 2015, Modelling Requirements for Least-Cost and Market-Driven Whole-System Analysis
Strbac G, Moreno Vieyra R, Konstantelos I, et al., 2014, Strategic Development of North Sea Grid Infrastructure to Facilitate Least-Cost Decarbonisation, Strategic Development of North Sea Grid Infrastructure to Facilitate Least-Cost Decarbonisation, Publisher: E3G
Offshore wind power is expected to make a significant contribution towards de-carbonisingthe European energy system. It is envisaged that today’s installed capacity levels of about 5GW of offshore wind generation may reach 150GW by 2030, with approximately half of thiscapacity located in the North Seas. Given Europe’s goal of increased integration of the powermarkets by expanding cross-border interconnectors, there is a significant opportunity tointegrate offshore wind generation and interconnector projects in the North Seas in order totake advantage of potentially significant economies of scale and thus reduce network costs.
Pudjianto D, Aunedi M, Djapic P, et al., 2014, Whole-systems assessment of the value of energy storage in low-carbon electricity systems, IEEE Transactions on Smart Grid, Vol: 5, Pages: 1098-1109, ISSN: 1949-3061
Energy storage represents one of the key enabling technologies to facilitate an efficient system integration of intermittent renewable generation and electrified transport and heating demand. This paper presents a novel whole-systems approach to valuing the contribution of grid-scale electricity storage. This approach simultaneously optimizes investment into new generation, network and storage capacity, while minimising system operation cost, and also considering reserve and security requirements. Case studies on the system of Great Britain (GB) with high share of renewable generation demonstrate that energy storage can simultaneously bring benefits to several sectors, including generation, transmission and distribution, while supporting real-time system balancing. The analysis distinguishes between bulk and distributed storage applications, while also considering the competition against other technologies, such as flexible generation, interconnection and demand-side response.
Aunedi M, Kountouriotis P-A, Calderon JEO, et al., 2013, Economic and Environmental Benefits of Dynamic Demand in Providing Frequency Regulation, IEEE TRANSACTIONS ON SMART GRID, Vol: 4, Pages: 2036-2048, ISSN: 1949-3053
- Author Web Link
- Cite
- Citations: 87
Papadaskalopoulos D, Strbac G, Mancarella P, et al., 2013, Decentralized Participation of Flexible Demand in Electricity Markets-Part II: Application With Electric Vehicles and Heat Pump Systems, IEEE TRANSACTIONS ON POWER SYSTEMS, Vol: 28, Pages: 3667-3674, ISSN: 0885-8950
- Author Web Link
- Cite
- Citations: 101
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.