Imperial College London


Faculty of Natural SciencesDepartment of Chemistry

Professor of Computational Chemistry



+44 (0)20 7594 5727m.bearpark




110AMolecular Sciences Research HubWhite City Campus





Michael Bearpark is a Principal Research Fellow in the Chemistry Department at Imperial College London. His research interests are in computational chemistry, including method and software development with applications to modeling the excited electronic states of large molecules and their photochemical reaction dynamics. He has contributed to the development of the Gaussian computational chemistry codes and his experimental collaborators includes laser spectroscopists working on the coherent control of chemical reactions.



Segarra-Martí J, Bearpark MJ, 2021, Modelling photoionisation in isocytosine: potential formation of longer-lived excited state cations in its keto form., Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, ISSN:1439-4235

Fare C, Yuan L, Cordon-Preciado V, et al., 2020, A radical-triggered reaction mechanism of the green-to-red photoconversion of EosFP, The Journal of Physical Chemistry B, Vol:124, ISSN:1520-6106, Pages:7765-7778

Segarra-Martí J, Segatta F, Mackenzie TA, et al., 2020, Modeling multidimensional spectral lineshapes from first principles: Application to water-solvated adenine, Faraday Discussions, Vol:221, ISSN:1359-6640, Pages:219-244

Boggio-Pasqua M, Bearpark MJ, 2019, Using Density Functional Theory Based Methods to Investigate the Photophysics of Polycyclic Aromatic Hydrocarbon Radical Cations: A Benchmark Study on Naphthalene, Pyrene and Perylene Cations, Chemphotochem, Vol:3, ISSN:2367-0932, Pages:763-769

Segarra-Marti J, Tran T, Bearpark M, 2019, Computing the ultrafast and radiationless electronic excited state decay of cytosine and 5‐methyl‐cytosine cations: uncovering the role of dynamic electron correlation, Chemphotochem, Vol:3, ISSN:2367-0932, Pages:856-865

More Publications