Imperial College London

ProfessorMartinBlunt

Faculty of EngineeringDepartment of Earth Science & Engineering

Chair in Flow in Porous Media
 
 
 
//

Contact

 

+44 (0)20 7594 6500m.blunt Website

 
 
//

Location

 

2.38ARoyal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Selem:2021:10.2118/206357-MS,
author = {Selem, AM and Agenet, N and Blunt, MJ and Bijeljic, B},
doi = {10.2118/206357-MS},
title = {Pore-scale imaging of tertiary low salinity waterflooding in a heterogeneous carbonate rock at reservoir conditions},
url = {http://dx.doi.org/10.2118/206357-MS},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - We investigated pore-scale oil displacement and rock wettability in tertiary low salinity waterflooding (LSW) in a heterogeneous carbonate sample using high-resolution three-dimensional imaging. This enabled the underlying mechanisms of the low salinity effect (LSE) to be observed and quantified in terms of changes in wettability and pore-scale fluid configuration, while also measuring the overall effect on recovery. The results were compared to the behavior under high salinity waterflooding (HSW). To achieve the wetting state found in oil reservoirs, an Estaillades limestone core sample was aged at 11 MPa and 80°C for threeweeks. The moderately oil-wet sample was then injected with high salinity brine (HSB) at a range of increasing flow rates, namely at 1, 2,4, 11, 22 and 42 µL/min with 10 pore volumes injected at each rate.Subsequently, low salinity brine (LSB) was injected following the same procedure. X-ray micro-computed tomography (micro-CT) was usedto visualize the fluid configuration in the pore space.A total of eight micro-CT images, with a resolution of 2.3 µm/voxel, wereacquired after both low salinity and high salinity floods.These high-resolution images were used to monitor fluid configuration in the porespace and obtain fluid saturations and occupancy maps. Wettabilitywascharacterized by measurements of in situ contactanglesand curvatures. The results show that the pore-scale mechanisms of improved recovery in LSW are consistent with the development of water micro-dropletswithin the oil and the expansion of thin water films between the oil and rock surface. Before waterflooding and during HSW, the measured contact angles were constant and above 110°, while the meancurvature and the capillary pressure values remained negative, suggesting that the HSB did not change the wettability state of the rock. However, with LSW the capillary pressure increased towards positive values as the wettability shifted towards a mixed-wet state. The flu
AU - Selem,AM
AU - Agenet,N
AU - Blunt,MJ
AU - Bijeljic,B
DO - 10.2118/206357-MS
PY - 2021///
TI - Pore-scale imaging of tertiary low salinity waterflooding in a heterogeneous carbonate rock at reservoir conditions
UR - http://dx.doi.org/10.2118/206357-MS
ER -