Imperial College London

ProfessorMichaelBronstein

Faculty of EngineeringDepartment of Computing

Chair in Machine Learning and Pattern Recognition
 
 
 
//

Contact

 

m.bronstein Website

 
 
//

Location

 

569Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Kovnatsky,
author = {Kovnatsky, A and Bronstein, MM and Bronstein, AM and Kimmel, R},
title = {Diffusion framework for geometric and photometric data fusion in non-rigid shape analysis},
url = {http://arxiv.org/abs/1101.4301v1},
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - In this paper, we explore the use of the diffusion geometry framework for thefusion of geometric and photometric information in local and global shapedescriptors. Our construction is based on the definition of a diffusion processon the shape manifold embedded into a high-dimensional space where theembedding coordinates represent the photometric information. Experimentalresults show that such data fusion is useful in coping with differentchallenges of shape analysis where pure geometric and pure photometric methodsfail.
AU - Kovnatsky,A
AU - Bronstein,MM
AU - Bronstein,AM
AU - Kimmel,R
TI - Diffusion framework for geometric and photometric data fusion in non-rigid shape analysis
UR - http://arxiv.org/abs/1101.4301v1
ER -