Imperial College London

ProfessorMichaelBronstein

Faculty of EngineeringDepartment of Computing

Chair in Machine Learning and Pattern Recognition
 
 
 
//

Contact

 

m.bronstein Website

 
 
//

Location

 

569Huxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Ovsjanikov:2009:10.1109/ICCVW.2009.5457682,
author = {Ovsjanikov, M and Bronstein, AM and Bronstein, MM and Guibas, LJ},
doi = {10.1109/ICCVW.2009.5457682},
pages = {320--327},
title = {Shape Google: A computer vision approach to isometry invariant shape retrieval},
url = {http://dx.doi.org/10.1109/ICCVW.2009.5457682},
year = {2009}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Feature-based methods have recently gained popularity in computer vision and pattern recognition communities, in applications such as object recognition and image retrieval. In this paper, we explore analogous approaches in the 3D world applied to the problem of non-rigid shape search and retrieval in large databases. ©2009 IEEE.
AU - Ovsjanikov,M
AU - Bronstein,AM
AU - Bronstein,MM
AU - Guibas,LJ
DO - 10.1109/ICCVW.2009.5457682
EP - 327
PY - 2009///
SP - 320
TI - Shape Google: A computer vision approach to isometry invariant shape retrieval
UR - http://dx.doi.org/10.1109/ICCVW.2009.5457682
ER -