Imperial College London

DrMartinaDe Marco

Faculty of EngineeringDepartment of Mechanical Engineering

Research Project Manager



+44 (0)20 7594




409City and Guilds BuildingSouth Kensington Campus





Publication Type

9 results found

Offer G, Szemberg O'Connor T, De Marco M, 2020, Opportunities for disruptive advances through engineering for next generation energy storage

Throughout human history, major economic disruption has been due to technological breakthroughs.Since 1990 the energy density of lithium-ion cells has increased by a factor of four and the cost has dropped by a factor of 10.This has caused disruption to the energy industry, but advances are slowing.The manufacturing and supply chain complexity means that the next big technology will take 15 years to dominate.The academic literature charts this process of development and can be used to show what is in the pipeline.Three candidates that have had a large increase in publication count are: lithium sulphur, solid-state, and sodium-ion technology.From the level of investments in start-ups and academic publication counts, solid‑state cells are closest to maturity.To identify disruption potential, look at uncertainty in performance. Cell lifetime in lithium-ion cells indicates room for improvement.Define a new disruption metric: . Look for areas of industry that lower this metric.Thermal management is a lucrative area for improvement. Cooling the cell tabs of a 5Ah cell reduces the lifetime cost by 66%, compared to 8%/pa for 13 years relying on cost reduction.Second life applications lower the lifetime cost by using the remaining 75% of energy throughput available in a cell after use in an electric vehicle.Drop-in changes to standard manufacturing processes enable huge disruption. Electrolyte additives can increase cell life by 10 times, lowering lifetime cost by 90% in a simple manufacturing intervention.


Vallejo-Vaz AJ, De Marco M, Stevens CAT, Akram A, Freiberger T, Hovingh GK, Kastelein JJP, Mata P, Raal FJ, Santos RD, Soran H, Watts GF, Abifadel M, Aguilar-Salinas CA, Al-khnifsawi M, AlKindi FA, Alnouri F, Alonso R, Al-Rasadi K, Al-Sarraf A, Ashavaid TF, Binder CJ, Bogsrud MP, Bourbon M, Bruckert E, Chlebus K, Corral P, Descamps O, Durst R, Ezhov M, Fras Z, Genest J, Groselj U, Harada-Shiba M, Kayikcioglu M, Lalic K, Lam CSP, Latkovskis G, Laufs U, Liberopoulos E, Lin J, Maher V, Majano N, Marais AD, März W, Mirrakhimov E, Miserez AR, Mitchenko O, Nawawi HM, Nordestgaard BG, Paragh G, Petrulioniene Z, Pojskic B, Postadzhiyan A, Reda A, Reiner Ž, Sadoh WE, Sahebkar A, Shehab A, Shek AB, Stoll M, Su T, Subramaniam T, Susekov AV, Symeonides P, Tilney M, Tomlinson B, Truong T, Tselepis AD, Tybjærg-Hansen A, Vázquez-Cárdenas A, Viigimaa M, Vohnout B, Widén E, Yamashita S, Banach M, Gaita D, Jiang L, Nilsson L, Santos LE, Schunkert H, Tokgözoğlu L, Car J, Catapano AL, Ray KKet al., 2018, Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC), Atherosclerosis, Vol: 277, Pages: 234-255, ISSN: 0021-9150

Background and aimsManagement of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries.MethodsLead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management.Results63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in ∼2/3 countries. Lipoprotein-apheresis is offered in ∼60% countries, although access is limited.ConclusionsFH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed.

Journal article

Buckley DJ, Hodge SA, De Marco M, Hu S, Anthony DB, Linden Cullen P, Skipper NT, Shaffer MSP, Howard CAet al., 2017, Trajectory of the Selective Dissolution of Charged Single-Walled Carbon Nanotubes, Journal of Physical Chemistry C, Vol: 121, Pages: 21703-21712, ISSN: 1932-7447

Single-Walled Carbon Nanotubes (SWCNTs) are materials with an array of remarkable physical properties determined by their geometries, however, SWCNTs are typically produced as a mixture of different lengths and electronic types. Consequently, many methods have been developed to sort the as-produced SWCNT samples by their physical cha-racteristics, often requiring aggressive and unscalable techniques to overcome the strong bundling forces between the nanotubes. Previously, it has been shown that negatively charging SWCNTs can lead to their thermodynamically-driven dissolution in polar solvents, and moreover that this process can selectively dissolve different SWNCT species, albeit with contrasting claims of selectivity. Here we carefully investigate dissolution as a function of charge added to the SWCNT starting material, using a range of complementary techniques. We uncover a far richer dependence on charge of SWCNT dissolution than previously reported. At low charge added, amorphous carbons preferentially dissolve, followed sequentially by metallic, larger diameter semiconducting SWCNTs, and finally smaller diameter semiconducting SWCNTs. At an optimal value, the dissolution yield is maximized across all species, however at higher charge than this we find the larger diameter and metallic SWCNTs are so charged they are no longer soluble, leaving smaller diameter SWCNTs in solution. Our results therefore clearly demonstrate two interconnected mechanisms for dissolution: on one hand charging of the SWNCTs based on their respective electron affinities on the other the solution thermodynamics. This work reconciles contrasting reports in the literature, provides a blueprint for scalable SWCNT separation and more generally demonstrates the..

Journal article

De Marco M, Menzel R, Bawaked SM, Mokhtar M, Obaid AY, Basahel SN, Shaffer Met al., 2017, Hybrid Effects in Graphene Oxide/Carbon Nanotube-Supported Layered Double Hydroxides: Enhancing the CO2 Sorption Properties, Carbon, Vol: 123, Pages: 616-627, ISSN: 0008-6223

Graphene oxide (GO) and multi-walled carbon nanotubes (MWCNT) have been previously used independently as active supports for layered double hydroxides (LDH), and found to enhance the intrinsic CO2 sorption capacity. However, the long-term stability of the materials subjected to temperature-swing adsorption (TSA) cycles still requires improvement. In this contribution, GO and MWCNT are hybridized to produce mixed substrates with improved surface area, and compatibility for the subsequent deposition of LDH platelets, compared to either phase alone. The incorporation of a robust and thoroughly hybridized carbon network considerably enhances the thermal stability of activated, promoted LDH over twenty cycles of gas adsorption-desorption (96% of retention of the initial sorption capacity at the 20th cycle), dramatically reducing the sintering previously observed when either GO or MWCNT were added separately. Detailed characterization of the morphology of the supported LDH, at several stages of the multicycle adsorption process, shows that the initial morphology of the adsorbents is more strongly retained when supported on the robust hybrid GO/MWCNT network; the CO2 adsorption performance correlates closely with the specific surface area of the adsorbents, with both maximized at small loadings of a 1:1 ratio GO:MWCNT substrate.

Journal article

Hu S, Laker ZPL, Leese HS, Rubio N, De Marco M, Au H, Skilbeck MS, Wilson NR, Shaffer MSPet al., 2017, Thermochemical functionalisation of graphenes with minimal framework damage, Chemical Science, Vol: 8, Pages: 6149-6154, ISSN: 2041-6520

Graphene and graphene nanoplatelets can be functionalised via a gas-phase thermochemical method; the approach is versatile, readily scalable, and avoids the introduction of additional defects by exploiting existing sites. Direct TEM imaging confirmed covalent modification of single layer graphene, without damaging the connectivity of the lattice, as supported by Raman spectrometry and AFM nano-indentation measurements of mechanical stiffness. The grafting methodology can also be applied to commercially-available bulk graphene nanoplatelets, as illustrated by the preparation of anionic, cationic, and non-ionic derivatives. Successful bulk functionalisation is evidenced by TGA, Raman, and XPS, as well as in dramatic changes in aqueous dispersability. Thermochemical functionalisation thus provides a facile approach to modify both graphene monolayers, and a wide range of graphene-related nanocarbons, using variants of simple CVD equipment.

Journal article

De Marco M, 2016, Hierarchical carbon nanotube and graphene oxide networks for multifunctional applications

Assembling carbon nanomaterials (CNs) into networks and macrostructures is a potentially effective approach for the development of a wide array of technologies, including energy storage and production devices. CNs, such as carbon nanotubes (CNTs) and graphene (G), are characterised by impressive mechanical and electrical properties, however, these features are related to the high quality, individualised single carbon species.1, 2 Producing two/three-dimensional CN architectures presents several hurdles, mainly concerning the need to disassemble the pristine CN aggregates, the damages inflicted on the carbon framework during processing, and the consequent lack of mechanical strength and/or reduced electrical conductivity of the final material. Suitable methods for preparing CN (macro)structures retaining the extraordinary properties of the fundamental CN units, have yet to be fully developed. This Thesis addresses these issues by suggesting two different methodologies for the synthesis of CN networks, which are tailored to specific applications of the final structures. A novel cross-linking strategy of single-walled carbon nanotubes (SWCNTs) is developed, yielding highly connected, high surface area (> 750 m2 g-1) and electrically conductive (> 15 S m-1) cryogels. The cryogels are demonstrated to be effective electrodes within fully working electrochemical devices. In contrast to cross-linking strategies already explored in literature, the SWCNTs are individualised at high concentrations (up to 0.25 M), and cross-linked with p-diiodobenzene without shortening or damaging the carbon framework via a “reductive chemistry” route.3 Careful control of the absolute charge concentration in the system is found to be crucial for maximising the extent of debundling and grafting, with a suggested optimum at 15 mM. Optimised synthesis parameters in turn determine the accessible surface area and the conductive properties of the final freeze-dried cryogels. Multi-

Thesis dissertation

De Marco MDM, Markoulidis F, Menzel R, Bawaked S, Mokhtar M, Al-Thabaiti S, Basahel S, Shaffer Met al., 2016, Cross-linked single-walled carbon nanotube aerogel electrodes via reductive coupling chemistry, Journal of Materials Chemistry A, Vol: 4, Pages: 5385-5389, ISSN: 2050-7496

Single-walled carbon nanotube (SWCNT) anions can be cross-linked by a dielectrophile to form covalent, carbon-bonded organogels. Freeze-drying produces cryogels with low density (2.3 mg cm−3), high surface area (766 m2 g−1), and high conductivity (9.4 S m−1), showing promise as supercapacitor electrodes. Counterion concentration controls debundling, grafting ratio, as well as all the resulting properties.

Journal article

Salice P, Mauri M, Castellino M, De Marco M, Bianchi A, Virga A, Tagliaferro A, Simonutti R, Menna Eet al., 2013, Synthesis and characterisation of a trithiocarbonate for the decoration of carbon nanostructures, CHEMICAL COMMUNICATIONS, Vol: 49, Pages: 8048-8050, ISSN: 1359-7345

Journal article

Celaya Sanfiz A, Garcia-Gallastegui A, Iruretagoyena D, Mokhtar M, Asiri M A, Basahel S N, Al-Thabaiti S A, Alyoubi A O, Chadwick D, Shaffer MSPet al., 2012, Self condensation of acetone over Mg-Al layered double hydroxide supported on multi-walled carbon nanotube catalysts

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00795927&limit=30&person=true