Imperial College London

ProfessorMicheleDougherty

Faculty of Natural SciencesDepartment of Physics

Head of Department of Physics, Professor of Space Physics
 
 
 
//

Contact

 

+44 (0)20 7594 7770m.dougherty Website

 
 
//

Assistant

 

Ms Lida Mnatsakanian +44 (0)20 7594 7503

 
//

Location

 

Blackett 900aBlackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

403 results found

Plaschke F, Goetz C, Volwerk M, Richter I, Fruehauff D, Narita Y, Glassmeier K-H, Dougherty MKet al., 2017, Fluxgate magnetometer offset vector determination by the 3D mirror mode method, Monthly Notices of the Royal Astronomical Society, Vol: 469, Pages: S675-S684, ISSN: 0035-8711

Fluxgate magnetometers on-board spacecraft need to be regularly calibrated in flight. In low fields, the most important calibration parameters are the three offset vector components, which represent the magnetometer measurements in vanishing ambient magnetic fields. In case of three-axis stabilized spacecraft, a few methods exist to determine offsets: (i) by analysis of Alfvénic fluctuations present in the pristine interplanetary magnetic field, (ii) by rolling the spacecraft around at least two axes, (iii) by cross-calibration against measurements from electron drift instruments or absolute magnetometers, and (iv) by taking measurements in regions of well-known magnetic fields, e.g. cometary diamagnetic cavities. In this paper, we introduce a fifth option, the 3-dimensional (3D) mirror mode method, by which 3D offset vectors can be determined using magnetic field measurements of highly compressional waves, e.g. mirror modes in the Earth’s magnetosheath. We test the method by applying it to magnetic field data measured by the following: the Time History of Events and Macroscale Interactions during Substorms-C spacecraft in the terrestrial magnetosheath, the Cassini spacecraft in the Jovian magnetosheath and the Rosetta spacecraft in the vicinity of comet 67P/Churyumov–Gerasimenko. The tests reveal that the achievable offset accuracies depend on the ambient magnetic field strength (lower strength meaning higher accuracy), on the length of the underlying data interval (more data meaning higher accuracy) and on the stability of the offset that is to be determined.

Journal article

Yao ZH, Coates AJ, Ray LC, Rae IJ, Grodent D, Jones GH, Dougherty MK, Owen CJ, Guo RL, Dunn WR, Radioti A, Pu ZY, Lewis GR, Waite JH, Gerard J-Cet al., 2017, Corotating Magnetic Reconnection Site in Saturn's Magnetosphere, ASTROPHYSICAL JOURNAL LETTERS, Vol: 846, ISSN: 2041-8205

Using measurements from theCassinispacecraft in Saturn’s magnetosphere, we propose a 3D physical picture of acorotating reconnection site, which can only be driven by an internally generated source. Our results demonstratethat the corotating magnetic reconnection can drive an expansion of the current sheet in Saturn’s magnetosphereand, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one ofSaturn’s rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturnsuggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics(e.g., theauroral precipitation)from the Earth. Our corotating reconnection picture could also potentially shed light on thefast rotating magnetized plasma environments in the solar system and beyond.

Journal article

Dougherty MK, 2017, CASSINI-HUYGENS Saturn in the infrared, NATURE ASTRONOMY, Vol: 1, Pages: 579-579, ISSN: 2397-3366

Journal article

Sulaiman AH, Masters A, Burgess D, Sergis N, Stawarz L, Fujimoto M, Coates AJ, Dougherty MKet al., 2017, Cassini Observations of Saturn's High-Mach Number Bow Shock, 32nd General Assembly and Scientific Symposium of the International-Union-of-Radio-Science (URSI GASS), Publisher: IEEE

Conference paper

Witasse O, Sanchez-Cano B, Mays ML, Kajdic P, Opgenoorth H, Elliott HA, Richardson IG, Zouganelis I, Zender J, Wimmer-Schweingruber RF, Turc L, Taylor MGGT, Roussos E, Rouillard A, Richter I, Richardson JD, Ramstad R, Provan G, Posner A, Plaut JJ, Odstrcil D, Nilsson H, Niemenen P, Milan SE, Mandt K, Lohf H, Lester M, Lebreton J-P, Kuulkers E, Krupp N, Koenders C, James MK, Intzekara D, Holmstrom M, Hassler DM, Hall BES, Guo J, Goldstein R, Goetz C, Glassmeier KH, Genot V, Evans H, Espley J, Edberg NJT, Dougherty M, Cowley SWH, Burch J, Behar E, Barabash S, Andrews DJ, Altobelli Net al., 2017, Interplanetary coronal mass ejection observed at STEREO-A, Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9 AU, Journal of Geophysical Research: Space Physics, Vol: 122, Pages: 7865-7890, ISSN: 2169-9380

We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44 h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9 AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110–111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116°, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.

Journal article

Masters A, Sulaiman A, Stawarz L, Reville B, Sergis N, Fujimoto M, Burgess D, Coates A, Dougherty Met al., 2017, An in situ Comparison of Electron Acceleration at Collisionless Shocks under Differing Upstream Magnetic Field Orientations, Astrophysical Journal, Vol: 843, ISSN: 1538-4357

A leading explanation for the origin of Galactic cosmic rays is acceleration at high-Mach number shock waves in the collisionless plasma surrounding young supernova remnants. Evidence for this is provided by multi-wavelength non-thermal emission thought to be associated with ultrarelativistic electrons at these shocks. However, the dependence of the electron acceleration process on the orientation of the upstream magnetic field with respect to the local normal to the shock front (quasi-parallel/quasi-perpendicular) is debated. Cassini spacecraft observations at Saturn's bow shock have revealed examples of electron acceleration under quasi-perpendicular conditions, and the first in situ evidence of electron acceleration at a quasi-parallel shock. Here we use Cassini data to make the first comparison between energy spectra of locally accelerated electrons under these differing upstream magnetic field regimes. We present data taken during a quasi-perpendicular shock crossing on 2008 March 8 and during a quasi-parallel shock crossing on 2007 February 3, highlighting that both were associated with electron acceleration to at least MeV energies. The magnetic signature of the quasi-perpendicular crossing has a relatively sharp upstream–downstream transition, and energetic electrons were detected close to the transition and immediately downstream. The magnetic transition at the quasi-parallel crossing is less clear, energetic electrons were encountered upstream and downstream, and the electron energy spectrum is harder above ~100 keV. We discuss whether the acceleration is consistent with diffusive shock acceleration theory in each case, and suggest that the quasi-parallel spectral break is due to an energy-dependent interaction between the electrons and short, large-amplitude magnetic structures.

Journal article

Kinrade J, Badman SV, Bunce EJ, Tao C, Provan G, Cowley SWH, Grocott A, Gray RL, Grodent D, Kimura T, Nichols JD, Arridge CS, Radioti A, Clarke JT, Crary FJ, Pryor WR, Melin H, Baines KH, Dougherty MKet al., 2017, An isolated, bright cusp aurora at Saturn, JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, Vol: 122, Pages: 6121-6138, ISSN: 2169-9380

Saturn's dayside aurora displays a number of morphological features poleward of the main emission region. We present an unusual morphology captured by the Hubble Space Telescope on 14 June 2014 (day 165), where for 2 h, Saturn's FUV aurora faded almost entirely, with the exception of a distinct emission spot at high latitude. The spot remained fixed in local time between 10 and 15 LT and moved poleward to a minimum colatitude of ~4°. It was bright and persistent, displaying intensities of up to 49 kR over a lifetime of 2 h. Interestingly, the spot constituted the entirety of the northern auroral emission, with no emissions present at any other local time—including Saturn's characteristic dawn arc, the complete absence of which is rarely observed. Solar wind parameters from propagation models, together with a Cassini magnetopause crossing and solar wind encounter, indicate that Saturn's magnetosphere was likely to have been embedded in a rarefaction region, resulting in an expanded magnetosphere configuration during the interval. We infer that the spot was sustained by reconnection either poleward of the cusp or at low latitudes under a strong component of interplanetary magnetic field transverse to the solar wind flow. The subsequent poleward motion could then arise from either reconfiguration of successive open field lines across the polar cap or convection of newly opened field lines. We also consider the possible modulation of the feature by planetary period rotating current systems.

Journal article

Sergis N, Jackman CM, Thomsen MF, Krimigis SM, Mitchell DG, Hamilton DC, Dougherty MK, Krupp N, Wilson RJet al., 2017, Radial and local time structure of the Saturnian ring current, revealed by Cassini, Journal of Geophysical Research: Space Physics, Vol: 122, Pages: 1803-1815, ISSN: 2169-9380

We analyze particle and magnetic field data obtained between July 2004 and December 2013 in the equatorial magnetosphere of Saturn, by the Cassini spacecraft. The radial and local time distribution of the total (thermal and suprathermal) particle pressure and total plasma beta (ratio of particle to magnetic pressure) over radial distances from 5 to 16 Saturn radii (RS = 60,258 km) is presented. The average azimuthal current density Jϕ and its separate components (inertial, pressure gradient, and anisotropy) are computed as a function of radial distance and local time and presented as equatorial maps. We explore the relative contribution of different physical mechanisms that drive the ring current at Saturn. Results show that (a) the particle pressure is controlled by thermal plasma inside of ~8 RS and by the hot ions beyond ~12 RS, exhibiting strong local time asymmetry with higher pressures measured at the dusk and night sectors; (b) the plasma beta increases with radial distance and remains >1 beyond 8–10 RS for all local times; (c) the ring current is asymmetric in local time and forms a maximum region between ~7 and ~13 RS, with values up to 100–115 pA/m2; and (d) the ring current is inertial everywhere inside of 7 RS, exhibits a mixed nature between 7 and 11 RS and is pressure gradient driven beyond 11 RS, with the exception of the noon sector where the mixed nature persists. In the dawn sector, it appears strongly pressure gradient driven for a wider range of radial distance, consistent with fast return flow of hot, tenuous magnetospheric plasma following tail reconnection.

Journal article

Khurana KK, Fatemi S, Lindkvist J, Roussos E, Krupp N, Holmstroem M, Russell CT, Dougherty MKet al., 2017, The role of plasma slowdown in the generation of Rhea's Alfven wings, Journal of Geophysical Research: Space Physics, Vol: 122, Pages: 1778-1788, ISSN: 2169-9380

Alfvén wings are known to form when a conducting or mass-loading object slows down a flowing plasma in its vicinity. Alfvén wings are not expected to be generated when an inert moon such as Rhea interacts with Saturn's magnetosphere, where the plasma impacting the moon is absorbed and the magnetic flux passes unimpeded through the moon. However, in two close polar passes of Rhea, Cassini clearly observed magnetic field signatures consistent with Alfvén wings. In addition, observations from a high-inclination flyby (Distance > 100 RRh) of Rhea on 3 June 2010 showed that the Alfvén wings continue to propagate away from Rhea even at this large distance. We have performed three-dimensional hybrid simulations of Rhea's interaction with Saturn's magnetosphere which show that the wake refilling process generates a plasma density gradient directed in the direction of corotating plasma. The resulting plasma pressure gradient exerts a force directed toward Rhea and slows down the plasma streaming into the wake along field lines. As on the same field lines, outside of the wake, the plasma continues to move close to its full speed, this differential motion of plasma bends the magnetic flux tubes, generating Alfvén wings in the wake. The current system excited by the Alfvén wings transfers momentum to the wake plasma extracting it from plasma outside the wake. Our work demonstrates that Alfvén wings can be excited even when a moon does not possess a conducting exosphere.

Journal article

Sorba AM, Achilleos NA, Guio P, Arridge CS, Pilkington NM, Masters A, Sergis N, Coates AJ, Dougherty MKet al., 2017, Modeling the compressibility of Saturn's magnetosphere in response to internal and external influences, Journal of Geophysical Research: Space Physics, Vol: 122, Pages: 1572-1589, ISSN: 2169-9402

The location of a planetary magnetopause is principally determined by the balance between solar wind dynamic pressure DP and magnetic and plasma pressures inside the magnetopause boundary. Previous empirical studies assumed that Saturn's magnetopause standoff distance varies as math formula and measured a constant compressibility parameter α corresponding to behavior intermediate between a vacuum dipole appropriate for Earth (α≈6) and a more easily compressible case appropriate for Jupiter (α≈4). In this study we employ a 2-D force balance model of Saturn's magnetosphere to investigate magnetospheric compressibility in response to changes in DP and global hot plasma content. For hot plasma levels compatible with Saturn observations, we model the magnetosphere at a range of standoff distances and estimate the corresponding DP values by assuming pressure balance across the magnetopause boundary. We find that for “average” hot plasma levels, our estimates of α are not constant with DP but vary from ∼4.8 for high DP conditions, when the magnetosphere is compressed (≤25 RS), to ∼3.5 for low DP conditions. This corresponds to the magnetosphere becoming more easily compressible as it expands. We find that the global hot plasma content influences magnetospheric compressibility even at fixed DP, with α estimates ranging from ∼5.4 to ∼3.3 across the range of our parameterized hot plasma content. We suggest that this behavior is predominantly driven by reconfiguration of the magnetospheric magnetic field into a more disk-like structure under such conditions. In a broader context, the compressibility of the magnetopause reveals information about global stress balance in the magnetosphere.

Journal article

Sulaiman AH, Gurnett DA, Halekas JS, Yates JN, Kurth WS, Dougherty MKet al., 2017, Whistler mode waves upstream of Saturn, Journal of Geophysical Research: Space Physics, Vol: 122, Pages: 227-234, ISSN: 2169-9380

Whistler mode waves are generated within and can propagate upstream of collisionless shocks. They are known to play a role in electron thermodynamics/acceleration and, under certain conditions, are markedly observed as wave trains preceding the shock ramp. In this paper, we take advantage of Cassini's presence at ~10 AU to explore the importance of whistler mode waves in a parameter regime typically characterized by higher Mach number (median of ~14) shocks, as well as a significantly different interplanetary magnetic field structure, compared to near Earth. We identify electromagnetic precursors preceding a small subset of bow shock crossings with properties which are consistent with whistler mode waves. We find these monochromatic, low-frequency, and circularly polarized waves to have a typical frequency range of 0.2–0.4 Hz in the spacecraft frame. This is due to the lower ion and electron cyclotron frequencies near Saturn, between which whistler waves can develop. The waves are also observed as predominantly right handed in the spacecraft frame, the opposite sense to what is typically observed near Earth. This is attributed to the weaker Doppler shift, owing to the large angle between the solar wind velocity and magnetic field vectors at 10 AU. Our results on the low occurrence of whistler waves upstream of Saturn also underpin the predominantly supercritical bow shock of Saturn.

Journal article

Provan G, Cowley SWH, Lamy L, Bunce EJ, Hunt GJ, Zarka P, Dougherty MKet al., 2016, Planetary period oscillations in Saturn's magnetosphere: coalescence and reversal of northern and southern periods in late northern spring, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 9829-9862, ISSN: 2169-9402

We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field and Saturn kilometric radiation (SKR) data over the interval from late 2012 to the end of 2015, beginning ~3 years after vernal equinox and ending ~1.5 years before northern solstice. Previous studies have shown that the northern and southern PPO periods converged across equinox from southern summer values ~10.8 h for the southern system and ~10.6 h for the northern system and near coalesced ~1 year after equinox, before separating again with the southern period ~10.69 h remaining longer than the northern ~10.64 h. We show that these conditions ended in mid-2013 when the two periods coalesced at ~10.66 h and remained so until mid-2014, increasing together to longer periods ~10.70 h. During coalescence the two systems were locked near magnetic antiphase with SKR modulations in phase, a condition in which the effects of the generating rotating twin vortex flows in the two ionospheres reinforce each other via hemisphere-to-hemisphere coupling. The magnetic-SKR relative phasing indicates the dominance of postdawn SKR sources in both hemispheres, as was generally the case during the study interval. In mid-2014 the two periods separated again, the northern increasing to ~10.78 h by the end of 2015, similar to the southern period during southern summer, while the southern period remained fixed near ~10.70 h, well above the northern period during southern summer. Despite this difference, this behavior resulted in the first enduring reversal of the two periods, northern longer than southern, during the Cassini era.

Journal article

Yates JN, Southwood DJ, Dougherty MK, Sulaiman AH, Masters A, Cowley SWH, Kivelson MG, Chen CHK, Provan G, Mitchell DG, Hospodarsky GB, Achilleos N, Sorba AM, Coates AJet al., 2016, Saturn's quasiperiodic magnetohydrodynamic waves, Geophysical Research Letters, Vol: 43, Pages: 102-111, ISSN: 1944-8007

Quasi-periodic ∼1-hour fluctuations have been recently reported by numerous instruments on-board the Cassini spacecraft. The interpretation of the sources of these fluctuations has remained elusive to date. Here we provide an explanation for the origin of these fluctuations using magnetometer observations. We find that magnetic field fluctuations at high northern latitudes are Alfvénic, with small amplitudes (∼0.4 nT), and are concentrated in wave-packets similar to those observed in Kleindienst et al. [2009]. The wave-packets recur periodically at the northern magnetic oscillation period. We use a magnetospheric box model to provide an interpretation of the wave periods. Our model results suggest that the observed magnetic fluctuations are second harmonic Alfvén waves standing between the northern and southern ionospheres in Saturn’s outer magnetosphere

Journal article

Hunt GJ, Cowley SWH, Provan G, Bunce EJ, Alexeev II, Belenkaya ES, Kalegaev VV, Dougherty MK, Coates AJet al., 2016, Field-aligned currents in Saturn's magnetosphere: local time dependence of southern summer currents in the dawn sector between midnight and noon, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 7785-7804, ISSN: 2169-9402

We examine and compare the magnetic field perturbations associated with field-aligned ionosphere-magnetosphere coupling currents at Saturn, observed by the Cassini spacecraft during two sequences of highly inclined orbits in 2006/2007 and 2008 under late southern summer conditions. These sequences explore the southern currents in the dawn-noon and midnight sectors, respectively, thus allowing investigation of possible origins of the local time (LT) asymmetry in auroral Saturn kilometric radiation (SKR) emissions, which peak in power at ~8 h LT in the dawn-noon sector. We first show that the dawn-noon field data generally have the same four-sheet current structure as found previously in the midnight data and that both are similarly modulated by “planetary period oscillation” (PPO) currents. We then separate the averaged PPO-independent (e.g., subcorotation) and PPO-related currents for both LT sectors by using the current system symmetry properties. Surprisingly, we find that the PPO-independent currents are essentially identical within uncertainties in the dawn-dusk and midnight sectors, thus providing no explanation for the LT dependence of the SKR emissions. The main PPO-related currents are, however, found to be slightly stronger and narrower in latitudinal width at dawn-noon than at midnight, leading to estimated precipitating electron powers, and hence emissions, that are on average a factor of ~1.3 larger at dawn-noon than at midnight, inadequate to account for the observed LT asymmetry in SKR power by a factor of ~2.7. Some other factors must also be involved, such as a LT asymmetry in the hot magnetospheric auroral source electron population.

Journal article

Masters A, Sulaiman AH, Sergis N, Stawarz L, Fujimoto M, Coates AJ, Dougherty MKet al., 2016, Suprathermal electrons at Saturn’s bow shock, Astrophysical Journal, Vol: 826, ISSN: 1538-4357

The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernovaRemnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks.However, the Cassini spacecraft has shown that the shock standingin the solar wind sunward of Saturn (Saturn’s bow shock) can occasionally reach this high-Mach number astrophysical regime.In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn’s bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, <28 keV)during shock crossings, but the higher energy channels were at(or close to) background. The high-energy electron detector (MIMI-LEMMS, >18 keV) measured a suprathermal electron signatureat 31 of 508 crossings, where typically only the lowest energy channels (<100 keV) were above background. We show that these results are consistent with theory in which the “injection” of thermal electrons into an acceleration process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyse the rare crossings with evidence for relativisticelectrons (up to ~1 MeV).

Journal article

Sulaiman AH, Masters A, Dougherty MK, 2016, Characterization of Saturn's bow shock: magnetic field observations of quasi-perpendicular shocks, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 4425-4434, ISSN: 2169-9380

Collisionless shocks vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics. This poses two complexities. First, separating the influences of these parameters on physical mechanisms such as energy dissipation. Second, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in situ observations. Here we present the parameter space of MA bow shock crossings from 2004 to 2014 as observed by the Cassini spacecraft. We find that Saturn's bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we determined the θBn of each crossing to show that Saturn's (dayside) bow shock is predominantly quasi-perpendicular by virtue of the Parker spiral at 10 AU. Our results suggest a strong dependence on MA in controlling the onset of physical mechanisms in collisionless shocks, particularly nontime stationarity and variability. We anticipate that our comprehensive assessment will yield deeper insight into high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks.

Journal article

Arridge CS, Jasinski JM, Achilleos N, Bogdanova YV, Bunce EJ, Cowley SWH, Fazakerley AN, Khurana KK, Lamy L, Leisner JS, Roussos E, Russell CT, Zarka P, Coates AJ, Dougherty MK, Jones GH, Krimigis SM, Krupp Net al., 2016, Cassini observations of Saturn's southern polar cusp, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 3006-3030, ISSN: 2169-9402

The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth has enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptune's cusp in 1989, but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly study the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturn's southern polar magnetosphere. Our main findings are that (i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, (ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and (iii) double cusp morphologies are consistent with the position of the cusp oscillating in phase with Saturn's global magnetospheric periodicities.

Journal article

Lai HR, Russell CT, Jia YD, Wei HY, Dougherty MKet al., 2016, Transport of magnetic flux and mass in Saturn's inner magnetosphere, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 3050-3057, ISSN: 2169-9402

It is well accepted that cold plasma sourced by Enceladus is ultimately lost to the solar wind, while the magnetic flux convecting outward with the plasma must return to the inner magnetosphere. However, whether the interchange or reconnection, or a combination of the two processes is the dominant mechanism in returning the magnetic flux is still under debate. Initial Cassini observations have shown that the magnetic flux returns in the form of flux tubes in the inner magnetosphere. Here we investigate those events with 10 year Cassini magnetometer data and confirm that their magnetic signatures are determined by the background plasma environments: inside (outside) the plasma disk, the returning magnetic field is enhanced (depressed) in strength. The distribution, temporal variation, shape, and transportation rate of the flux tubes are also characterized. The flux tubes break into smaller ones as they convect in. The shape of their cross section is closer to circular than fingerlike as produced in the simulations based on the interchange mechanism. In addition, no sudden changes in any flux tube properties can be found at the “boundary” which has been claimed to separate the reconnection and interchange-dominant regions. On the other hand, reasonable cold plasma loss rate and outflow velocity can be obtained if the transport rate of the magnetic flux matches the reconnection rate, which supports reconnection alone as the dominant mechanism in unloading the cold plasma from the inner magnetosphere and returning the magnetic flux from the tail.

Journal article

Russell CT, Wei HY, Cowee MM, Neubauer FM, Dougherty MKet al., 2016, Ion cyclotron waves at Titan, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 2095-2103, ISSN: 2169-9402

During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm−3 to 0.02 cm−3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm−3 to 0.25 cm−3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

Journal article

Felici M, Arridge CS, Coates AJ, Badman SV, Dougherty MK, Jackman CM, Kurth WS, Melin H, Mitchell DG, Reisenfeld DB, Sergis Net al., 2016, Cassini observations of ionospheric plasma in Saturn's magnetotail lobes, Journal of Geophysical Research: Space Physics, Vol: 121, Pages: 338-357, ISSN: 2169-9402

Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ≃ 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 109 and (1.43 ± 0.21) × 1010 cm−2 s−1, 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×102 and 1.1 ×103 kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found

Journal article

Kurth WS, Hospodarsky GB, Gurnett DA, Lamy L, Dougherty MK, Nichols J, Bunce EJ, Pryor W, Baines K, Stallard T, Melin H, Crary FJet al., 2016, Saturn kilometric radiation intensities during the Saturn auroral campaign of 2013, Icarus, Vol: 263, Pages: 2-9, ISSN: 1090-2643

The Saturn auroral campaign carried out in the spring of 2013 used multiple Earth-based observations, remote-sensing observations from Cassini, and in situ-observations from Cassini to further our understanding of auroras at Saturn. Most of the remote sensing and Earth-based measurements are, by nature, not continuous. And, even the in situ measurements, while continuously obtained, are not always obtained in regions relevant to the study of the aurora. Saturn kilometric radiation, however, is remotely monitored nearly continuously by the Radio and Plasma Wave Science instrument on Cassini. This radio emission, produced by the cyclotron maser instability, is tightly tied to auroral processes at Saturn as are auroral radio emissions at other planets, most notably Jupiter and Earth. This paper provides the time history of the intensity of the radio emissions through the auroral campaign as a means of understanding the temporal relationships between the sometimes widely spaced observations of the auroral activity. While beaming characteristics of the radio emissions are known to prevent single spacecraft observations of this emission from being a perfect auroral activity indicator, we demonstrate a good correlation between the radio emission intensity and the level of UV auroral activity, when both measurements are available.

Journal article

Badman SV, Provan G, Bunce EJ, Mitchell DG, Melin H, Cowley SWH, Radioti A, Kurth WS, Pryor WR, Nichols JD, Jinks SL, Stallard TS, Brown RH, Baines KH, Dougherty MKet al., 2016, Saturn's auroral morphology and field-aligned currents during a solar wind compression, Icarus, Vol: 263, Pages: 83-93, ISSN: 1090-2643

On 21–22 April 2013, during a coordinated auroral observing campaign, instruments onboard Cassini and the Hubble Space Telescope observed Saturn’s aurora while Cassini traversed Saturn’s high latitude auroral field lines. Signatures of upward and downward field-aligned currents were detected in the nightside magnetosphere in the magnetic field and plasma measurements. The location of the upward current corresponded to the bright ultraviolet auroral arc seen in the auroral images, and the downward current region was located poleward of the upward current in an aurorally dark region. Within the polar cap magnetic field and plasma fluctuations were identified with periods of ∼20 and ∼60 min. The northern and southern auroral ovals were observed to rock in latitude in phase with the respective northern and southern planetary period oscillations. A solar wind compression impacted Saturn’s magnetosphere at the start of 22 April 2013, identified by an intensification and extension to lower frequencies of the Saturn kilometric radiation, with the following sequence of effects: (1) intensification of the auroral field-aligned currents; (2) appearance of a localised, intense bulge in the dawnside (04–06 LT) aurora while the midnight sector aurora remained fainter and narrow; and (3) latitudinal broadening and poleward contraction of the nightside aurora, where the poleward motion in this sector is opposite to that expected from a model of the auroral oval’s usual oscillation. These observations are interpreted as the response to tail reconnection events, initially involving Vasyliunas-type reconnection of closed mass-loaded magnetotail field lines, and then proceeding onto open lobe field lines, causing the contraction of the polar cap region on the night side.

Journal article

Roussos E, Krupp N, Mitchell DG, Paranicas C, Krimigis SM, Andriopoulou M, Palmaerts B, Kurth WS, Badman SV, Masters A, Dougherty MKet al., 2016, Quasi-periodic injections of relativistic electrons in Saturn’s outer magnetosphere, Icarus, Vol: 263, Pages: 101-116, ISSN: 1090-2643

Quasi-periodic, short-period injections of relativistic electrons have been observed in both Jupiter’s and Saturn’s magnetospheres, but understanding their origin or significance has been challenging, primarily due to the limited number of in-situ observations of such events by past flyby missions. Here we present the first survey of such injections in an outer planetary magnetosphere using almost nine years of energetic charged particle and magnetic field measurements at Saturn. We focus on events with a characteristic period of about 60–70 min (QP60, where QP stands for quasi-periodic). We find that the majority of QP60, which are very common in the outer magnetosphere, map outside Titan’s orbit. QP60 are also observed over a very wide range of local times and latitudes. A local time asymmetry in their distribution is the most striking feature, with QP60 at dusk being between 5 and 25 times more frequent than at dawn. Field-line tracing and pitch angle distributions suggest that most events at dusk reside on closed field lines. They are distributed either near the magnetopause, or, in the case of the post-dusk (or pre-midnight) sector, up to about 30 RS inside it, along an area extending parallel to the dawn–dusk direction. QP60 at dawn map either on open field lines and/or near the magnetopause. Both the asymmetries and varying mapping characteristics as a function of local time indicate that generation of QP60 cannot be assigned to a single process. The locations of QP60 seem to trace sites that reconnection is expected to take place. In that respect, the subset of events observed post-dusk and deep inside the magnetopause may be directly or indirectly linked to the Vasyliunas reconnection cycle, while magnetopause reconnection/Kelvin–Helmholtz (KH) instability could be invoked to explain all other events at the duskside. Using similar arguments, injections at the dawnside magnetosphere may result from solar-wind induced storm

Journal article

Regoli LH, Roussos E, Feyerabend M, Jones GH, Krupp N, Coates AJ, Simon S, Motschmann U, Dougherty MKet al., 2015, Access of energetic particles to Titan's exobase: A study of Cassini's T9 flyby, Planetary and Space Science, Vol: 130, Pages: 40-53, ISSN: 1873-5088

We study how the local electromagnetic disturbances introduced by Titan affect the ionization rates of the atmosphere. For this, we model the precipitation of energetic particles, specifically hydrogen and oxygen ions with energies between 1 keV and 1 MeV, into Titan׳s exobase for the specific magnetospheric configuration of the T9 flyby. For the study, a particle tracing software package is used which consists of an integration of the single particle Lorentz force equation using a 4th order Runge–Kutta numerical method. For the electromagnetic disturbances, the output of the A.I.K.E.F. hybrid code (kinetic ions, fluid electrons) is used, allowing the possibility of analyzing the disturbances and asymmetries in the access of energetic particles originated by their large gyroradii. By combining these methods, 2D maps showing the access of each set of particles were produced. We show that the access of different particles is largely dominated by their gyroradii, with the complexity of the maps increasing with decreasing gyroradius, due to the larger effect that local disturbances introduced by the presence of the moon have in the trajectory of the particles with lower energies. We also show that for particles with gyroradii much larger than the moon׳s radius, simpler descriptions of the electromagnetic environment can reproduce similar results to those obtained when using the full hybrid simulation description, with simple north–south fields being sufficient to reproduce the hybrid code results for O+ ions with energies larger than 10 keV but not enough to reproduce those for H+ ions at any of the energies covered in the present study. Finally, by combining the maps created with upstream plasma flow measurements by the MIMI/CHEMS instrument, we are able to estimate normalized fluxes arriving at different selected positions of the moon׳s exobase. We then use these fluxes to calculate energy deposition and non-dissociative N2 ionization rates for precipitati

Journal article

Arridge CS, Eastwood J, Jackman CM, Poh GK, Slavin JA, Thomsen MF, Andre N, Jia X, Kidder A, Lamy L, Radioti A, Reisenfeld DB, Sergis N, Volwerk M, Walsh AP, Zarka P, Coates AJ, Dougherty MKet al., 2015, Cassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail, Nature Physics, Vol: 12, Pages: 268-271, ISSN: 1745-2481

Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy1, 2, 3, 4. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field5, 6. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturn’s magnetotail. The data also show evidence of magnetic reconnection over a period of 19 h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn6. This counters the view of reconnection as a transient method of internal plasma loss at Saturn5, 7. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies.

Journal article

Provan G, Tao C, Cowley SWH, Dougherty MK, Coates AJet al., 2015, Planetary period oscillations in Saturn's magnetosphere: Examining the relationship between abrupt changes in behavior and solar wind-induced magnetospheric compressions and expansions, Journal of Geophysical Research: Space Physics, Vol: 120, Pages: 9524-9544, ISSN: 2169-9402

We examine planetary period oscillations (PPOs) observed in Saturn's magnetospheric magnetic field data from the time of Saturn's equinox in 2009. In particular, we focus on the time period commencing February 2011, when the oscillations started to display sudden and unexpected changes in behavior at ~100–200 day intervals. These were characterized by large simultaneous changes in the amplitude of the northern and southern PPO systems, together with small changes in period and jumps in phase. Nine significant abrupt changes have been observed in the postequinox interval to date, commencing as the Sun started to emerge from a long extended solar minimum. We perform a statistical study to determine whether these modulations in PPO behavior were associated with changes in the solar and/or upstream solar wind conditions. We report that the upstream solar wind conditions show elevated values of solar wind dynamic pressure and density around the time of PPO behavioral transitions, as opposed to before and after these times. We suggest that abrupt changes in PPO behavior may be related to significant changes in the size of the Saturnian magnetosphere in response to varying solar wind conditions.

Journal article

Hadid LZ, Sahraoui F, Kiyani KH, Retino A, Modolo R, Canu P, Masters A, Dougherty MKet al., 2015, Nature of the MHD and kinetic scale turbulence in the magnetosheath of Saturn: Cassini observations, Astrophysical Journal Letters, Vol: 813, ISSN: 2041-8213

Low-frequency turbulence in Saturn's magnetosheath is investigated using in situ measurements of the Cassini spacecraft. Focus is put on the magnetic energy spectra computed in the frequency range of ~[10−4, 1]Hz. A set of 42 time intervals in the magnetosheath were analyzed, and three main results that contrast with known features of solar wind turbulence are reported. (1) The magnetic energy spectra showed a ~f−1 scaling at MHD scales followed by an $\sim {f}^{-2.6}$ scaling at sub-ion scales without forming the so-called inertial range. (2) The magnetic compressibility and the cross-correlation between the parallel component of the magnetic field and density fluctuations $C(\delta n,\delta {B}_{| | })$ indicate the dominance of the compressible magnetosonic slow-like modes at MHD scales rather than the Alfvén mode. (3) Higher-order statistics revealed a monofractal (multifractal) behavior of the turbulent flow downstream of a quasi-perpendicular (quasi-parallel) shock at sub-ion scales. Implications of these results on theoretical modeling of space plasma turbulence are discussed.

Journal article

Engelhardt IAD, Wahlund J-E, Andrews DJ, Eriksson AI, Ye S, Kurth WS, Gurnett DA, Morooka MW, Farrell WM, Dougherty MKet al., 2015, Plasma regions, charged dust and field-aligned currents near Enceladus, PLANETARY AND SPACE SCIENCE, Vol: 117, Pages: 453-469, ISSN: 0032-0633

Journal article

Hunt GJ, Cowley SWH, Provan G, Bunce EJ, Alexeev II, Belenkaya ES, Kalegaev VV, Dougherty MK, Coates AJet al., 2015, Field-aligned currents in Saturn's northern nightside magnetosphere: Evidence for interhemispheric current flow associated with planetary period oscillations, Journal of Geophysical Research: Space Physics, Vol: 120, Pages: 7552-7584, ISSN: 2169-9402

We investigate the magnetic perturbations associated with field-aligned currents observed on 34 Cassini passes over the premidnight northern auroral region during 2008. These are found to be significantly modulated not only by the northern planetary-period oscillation (PPO) system, similar to the southern currents by the southern PPO system found previously, but also by the southern PPO system as well, thus providing the first clear evidence of PPO-related interhemispheric current flow. The principal field-aligned currents of the two PPO systems are found to be co-located in northern ionospheric colatitude, together with the currents of the PPO-independent (subcorotation) system, located between the vicinity of the open-closed field boundary and field lines mapping to ~9 Saturn radius (Rs) in the equatorial plane. All three systems are of comparable magnitude, ~3 MA in each PPO half-cycle. Smaller PPO-related field-aligned currents of opposite polarity also flow in the interior region, mapping between ~6 and ~9 Rs in the equatorial plane, carrying a current of ~ ±2 MA per half-cycle, which significantly reduce the oscillation amplitudes in the interior region. Within this interior region the amplitudes of the northern and southern oscillations are found to fall continuously with distance along the field lines from the corresponding hemisphere, thus showing the presence of cross-field currents, with the southern oscillations being dominant in the south, and modestly lower in amplitude than the northern oscillations in the north. As in previous studies, no oscillations related to the opposite hemisphere are found on open field lines in either hemisphere.

Journal article

Sulaiman AH, Masters A, Dougherty MK, Burgess D, Fujimoto M, Hospodarsky GBet al., 2015, Quasiperpendicular high Mach number shocks, Physical Review Letters, Vol: 115, ISSN: 1079-7114

Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ∼0.3τc, where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00029186&person=true&page=3&respub-action=search.html