Imperial College London

Professor Marc-Emmanuel Dumas

Faculty of MedicineDepartment of Metabolism, Digestion and Reproduction

Chair in Systems Medicine
 
 
 
//

Contact

 

+44 (0)20 7594 1820m.dumas Website

 
 
//

Assistant

 

Mrs Patricia Murphy +44 (0)20 7594 1603

 
//

Location

 

E315BBurlington DanesHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

157 results found

Cookson W, Cuthbertson L, Moffatt M, 2024, GENOMIC ATTRIBUTES OF AIRWAY COMMENSAL BACTERIA AND MUCOSA, Communications Biology, ISSN: 2399-3642

Journal article

Michael BD, Dunai C, Needham EJ, Tharmaratnam K, Williams R, Huang Y, Boardman SA, Clark JJ, Sharma P, Subramaniam K, Wood GK, Collie C, Digby R, Ren A, Norton E, Leibowitz M, Ebrahimi S, Fower A, Fox H, Tato E, Ellul MA, Sunderland G, Held M, Hetherington C, Egbe FN, Palmos A, Stirrups K, Grundmann A, Chiollaz A-C, Sanchez J-C, Stewart JP, Griffiths M, Solomon T, Breen G, Coles AJ, Kingston N, Bradley JR, Chinnery PF, Cavanagh J, Irani SR, Vincent A, Baillie JK, Openshaw PJ, Semple MG, ISARIC4C Investigators, COVID-CNS Consortium, Taams LS, Menon DKet al., 2023, Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses, Nature Communications, Vol: 14, ISSN: 2041-1723

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.

Journal article

Quesada-Vázquez S, Castells-Nobau A, Latorre J, Oliveras-Cañellas N, Puig-Parnau I, Tejera N, Tobajas Y, Baudin J, Hildebrand F, Beraza N, Burcelin R, Martinez-Gili L, Chilloux J, Dumas M-E, Federici M, Hoyles L, Caimari A, Del Bas JM, Escoté X, Fernández-Real J-M, Mayneris-Perxachs Jet al., 2023, Potential therapeutic implications of histidine catabolism by the gut microbiota in NAFLD patients with morbid obesity., Cell Rep Med, Vol: 4

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.

Journal article

Puig-Castellvi F, Pacheco-Tapia R, Deslande M, Jia M, Andrikopoulos P, Chechi K, Bonnefond A, Froguel P, Dumas M-Eet al., 2023, Advances in the integration of metabolomics and metagenomics for human gut microbiome and their clinical applications, TRAC-TRENDS IN ANALYTICAL CHEMISTRY, Vol: 167, ISSN: 0165-9936

Journal article

Andrikopoulos P, Aron-Wisnewsky J, Chakaroun R, Myridakis A, Forslund S, Nielsen T, Adriouch S, Holmes B, Chilloux J, Vieira-Silva S, Falony G, Salem J-E, Andreelli F, Belda E, Kieswich J, Chechi K, Puig-Castellvi F, Chevalier M, Le Chatelier E, Olanipekun M, Hoyles L, Alves R, Helft G, Isnard R, Køber L, Coelho LP, Rouault C, Gauguier D, Gøtze JP, Prifti E, Froguel P, The MetaCardis C, Zucker J-D, Bäckhed F, Vestergaard H, Hansen T, Oppert J-M, Blüher M, Nielsen J, Raes J, Bork P, Yaqoob M, Stumvoll M, Pedersen O, Ehrlich SD, Clément K, Dumas M-Eet al., 2023, Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide, Nature Communications, Vol: 14, Pages: 1-18, ISSN: 2041-1723

The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied “explainable” machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.

Journal article

Roper KJ, Thomas J, Albalawi W, Maddocks E, Dobson S, Alshehri A, Barone FG, Baltazar M, Semple MG, Ho A, Turtle L, ISARIC4C Consortium, Paxton WA, Pollakis Get al., 2023, Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera, Scientific Reports, Vol: 13, ISSN: 2045-2322

The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28 days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses.

Journal article

Jones RE, Gruszczyk AV, Schmidt C, Hammersley DJ, Mach L, Lee M, Wong J, Yang M, Hatipoglu S, Lota AS, Barnett SN, Toscano-Rivalta R, Owen R, Raja S, De Robertis F, Smail H, De-Souza A, Stock U, Kellman P, Griffin J, Dumas M-E, Martin JL, Saeb-Parsy K, Vazir A, Cleland JGF, Pennell DJ, Bhudia SK, Halliday BP, Noseda M, Frezza C, Murphy MP, Prasad SKet al., 2023, Assessment of left ventricular tissue mitochondrial bioenergetics in patients with stable coronary artery disease, Nature Cardiovascular Research, Vol: 2, Pages: 733-745, ISSN: 2731-0590

Recurrent myocardial ischemia can lead to left ventricular (LV) dysfunction in patients with coronary artery disease (CAD). In this observational cohort study, we assessed for chronic metabolomic and transcriptomic adaptations within LV myocardium of patients undergoing coronary artery bypass grafting. During surgery, paired transmural LV biopsies were acquired on the beating heart from regions with and without evidence of inducible ischemia on preoperative stress perfusion cardiovascular magnetic resonance. From 33 patients, 63 biopsies were acquired, compared to analysis of LV samples from 11 donor hearts. The global myocardial adenosine triphosphate (ATP):adenosine diphosphate (ADP) ratio was reduced in patients with CAD as compared to donor LV tissue, with increased expression of oxidative phosphorylation (OXPHOS) genes encoding the electron transport chain complexes across multiple cell types. Paired analyses of biopsies obtained from LV segments with or without inducible ischemia revealed no significant difference in the ATP:ADP ratio, broader metabolic profile or expression of ventricular cardiomyocyte genes implicated in OXPHOS. Differential metabolite analysis suggested dysregulation of several intermediates in patients with reduced LV ejection fraction, including succinate. Overall, our results suggest that viable myocardium in patients with stable CAD has global alterations in bioenergetic and transcriptional profile without large regional differences between areas with or without inducible ischemia.

Journal article

Pairo-Castineira E, Rawlik K, Bretherick AD, Qi T, Wu Y, Nassiri I, McConkey GA, Zechner M, Klaric L, Griffiths F, Oosthuyzen W, Kousathanas A, Richmond A, Millar J, Russell CD, Malinauskas T, Thwaites R, Morrice K, Keating S, Maslove D, Nichol A, Semple MG, Knight J, Shankar-Hari M, Summers C, Hinds C, Horby P, Ling L, McAuley D, Montgomery H, Openshaw PJM, Begg C, Walsh T, Tenesa A, Flores C, Riancho JA, Rojas-Martinez A, Lapunzina P, Clohisey S, Abellan J, Alex B, Shelton JF, Yang J, Ponting CP, Wilson JF, Vitart V, Abedalthagafi M, Luchessi AD, Parra EJ, Cruz R, Carracedo A, Fawkes A, Murphy L, Rowan K, Pereira AC, Law A, Fairfax B, Hendry SC, Baillie JKet al., 2023, Author Correction: GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19, Nature, Vol: 619, Pages: E61-E61, ISSN: 0028-0836

Journal article

Molinaro A, Nemet I, Lassen PB, Chakaroun R, Nielsen T, Aron-Wisnewsky J, Bergh P-O, Li L, Henricsson M, Kober L, Isnard R, Helft G, Stumvoll M, Pedersen O, Smith JG, Tang WHW, Clement K, Hazen SL, Backhed Fet al., 2023, Microbially Produced Imidazole Propionate Is Associated With Heart Failure and Mortality, JACC-HEART FAILURE, Vol: 11, Pages: 810-821, ISSN: 2213-1779

Journal article

Habboub N, Mullish BH, Moore C, Lanoria M, Challis B, Forlano R, Thursz M, Dumas M-E, Manousou Pet al., 2023, Investigating the correlation of a poly-metabolic risk score to clinical features in non-alcoholic fatty liver disease patients throughout a faecal microbiota transplant clinical trial, Publisher: ELSEVIER, Pages: S344-S345, ISSN: 0168-8278

Conference paper

Pairo-Castineira E, Rawlik K, Bretherick AD, Qi T, Wu Y, Nassiri I, McConkey GA, Zechner M, Klaric L, Griffiths F, Oosthuyzen W, Kousathanas A, Richmond A, Millar J, Russell CD, Malinauskas T, Thwaites R, Morrice K, Keating S, Maslove D, Nichol A, Semple MG, Knight J, Shankar-Hari M, Summers C, Hinds C, Horby P, Ling L, McAuley D, Montgomery H, Openshaw PJM, Begg C, Walsh T, Tenesa A, Flores C, Riancho JA, Rojas-Martinez A, Lapunzina P, GenOMICC Investigators, SCOURGE Consortium, ISARICC Investigators, 23andMe COVID-19 Team, Yang J, Ponting CP, Wilson JF, Vitart V, Abedalthagafi M, Luchessi AD, Parra EJ, Cruz R, Carracedo A, Fawkes A, Murphy L, Rowan K, Pereira AC, Law A, Fairfax B, Hendry SC, Baillie JKet al., 2023, GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19, Nature, Vol: 617, Pages: 764-768, ISSN: 0028-0836

Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

Journal article

Graham NSN, Blissitt G, Zimmerman K, Friedland D, Dumas M-E, Coady E, Heslegrave A, Zetterberg H, Escott-Price V, Schofield S, Fear NT, Boos C, Bull AMJ, Cullinan P, Bennett A, Sharp DJ, ADVANCE Studyet al., 2023, ADVANCE-TBI study protocol: traumatic brain injury outcomes in UK military personnel serving in Afghanistan between 2003 and 2014 - a longitudinal cohort study, BMJ Open, Vol: 13, ISSN: 2044-6055

INTRODUCTION: Outcomes of traumatic brain injury (TBI) are highly variable, with cognitive and psychiatric problems often present in survivors, including an increased dementia risk in the long term. Military personnel are at an increased occupational risk of TBI, with high rates of complex polytrauma including TBI characterising the UK campaign in Afghanistan. The ArmeD SerVices TrAuma and RehabilitatioN OutComE (ADVANCE)-TBI substudy will describe the patterns, associations and long-term outcomes of TBI in the established ADVANCE cohort. METHODS AND ANALYSIS: The ADVANCE cohort comprises 579 military personnel exposed to major battlefield trauma requiring medical evacuation, and 566 matched military personnel without major trauma. TBI exposure has been captured at baseline using a standardised interview and registry data, and will be refined at first follow-up visit with the Ohio State Method TBI interview (a National Institute of Neurological Disorders and Stroke TBI common data element). Participants will undergo blood sampling, MRI and detailed neuropsychological assessment longitudinally as part of their follow-up visits every 3-5 years over a 20-year period. Biomarkers of injury, neuroinflammation and degeneration will be quantified in blood, and polygenic risk scores calculated for neurodegeneration. Age-matched healthy volunteers will be recruited as controls for MRI analyses. We will describe TBI exposure across the cohort, and consider any relationship with advanced biomarkers of injury and clinical outcomes including cognitive performance, neuropsychiatric symptom burden and function. The influence of genotype will be assessed. This research will explore the relationship between military head injury exposure and long-term outcomes, providing insights into underlying disease mechanisms and informing prevention interventions. ETHICS AND DISSEMINATION: The ADVANCE-TBI substudy has received a favourable opinion from the Ministry of Defence Research Eth

Journal article

Goldswain H, Dong X, Penrice-Randal R, Alruwaili M, Shawli GT, Prince T, Williamson MK, Raghwani J, Randle N, Jones B, Donovan-Banfield I, Salguero FJ, Tree JA, Hall Y, Hartley C, Erdmann M, Bazire J, Jearanaiwitayakul T, Semple MG, Openshaw PJM, Baillie JK, ISARIC4C Investigators, Emmett SR, Digard P, Matthews DA, Turtle L, Darby AC, Davidson AD, Carroll MW, Hiscox JAet al., 2023, The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection, Genome Biology, Vol: 24, ISSN: 1474-7596

BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.

Journal article

Liew F, Talwar S, Cross A, Willett B, Scott S, Logan N, Siggins M, Swieboda D, Sidhu J, Efstathiou C, Moore S, Davis C, Mohamed N, Nunag J, King C, Thompson AAR, Rowland-Jones S, Docherty A, Chalmers J, Ho L-P, Horsley A, Raman B, Poinasamy K, Marks M, Kon OM, Howard L, Wootton D, Dunachie S, Quint J, Evans R, Wain L, Fontanella S, de Silva T, Ho A, Harrison E, Baillie JK, Semple MG, Brightling C, Thwaites R, Turtle L, Openshaw Pet al., 2023, SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination, EBioMedicine, Vol: 87, Pages: 1-14, ISSN: 2352-3964

Background:Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced.Methods:In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data.Findings:Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination.Interpretation:The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity.Funding:This

Journal article

Belda E, Voland L, Tremaroli V, Falony G, Adriouch S, Assmann KE, Prifiti E, Aron-Wisnewsky J, Debedat J, Le Roy T, Nielsen T, Amouyal C, Andre S, Andreelli F, Blueher M, Chakaroun R, Chilloux J, Coelho LP, Dao MC, Das P, Fellahi S, Forslund S, Galleron N, Hansen TH, Holmes B, Ji B, Pedersen HK, Phuong L, Le Chatelier E, Lewinter C, Manneras-Holm L, Marquet F, Myridakis A, Pelloux V, Pons N, Quinquis B, Rouault C, Roume H, Salem J-E, Sokolovska N, Sondertoft NB, Touch S, Vieira-Silva S, Galan P, Holst J, Gotze JP, Kober L, Vestergaard H, Hansen T, Hercberg S, Oppert J-M, Nielsen J, Letunic I, Dumas M-E, Stumvoll M, Pedersen OB, Bork P, Ehrlich SD, Zucker J-D, Baeckhed F, Raes J, Clement Ket al., 2022, Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism, Gut, Vol: 71, Pages: 2463-2480, ISSN: 0017-5749

Objectives Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome’s functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation.Design We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice.Results Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration.Conclusion Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity.Trial registration number NCT02059538.

Journal article

Vink E, Davis C, MacLean A, Pascall D, McDonald SE, Gunson R, Hardwick HE, Oosthuyzen W, Openshaw PJM, Baillie JK, Semple MG, Ho Aet al., 2022, Viral coinfections in hospitalized Coronavirus disease 2019 patients recruited to the international severe acute respiratory and emerging infections consortium WHO clinical characterisation protocol UK study, Open Forum Infectious Diseases, Vol: 9, Pages: 1-10, ISSN: 2328-8957

BackgroundWe conducted this study to assess the prevalence of viral coinfection in a well characterized cohort of hospitalized coronavirus disease 2019 (COVID-19) patients and to investigate the impact of coinfection on disease severity.MethodsMultiplex real-time polymerase chain reaction testing for endemic respiratory viruses was performed on upper respiratory tract samples from 1002 patients with COVID-19, aged <1 year to 102 years old, recruited to the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK study. Comprehensive demographic, clinical, and outcome data were collected prospectively up to 28 days post discharge.ResultsA coinfecting virus was detected in 20 (2.0%) participants. Multivariable analysis revealed no significant risk factors for coinfection, although this may be due to rarity of coinfection. Likewise, ordinal logistic regression analysis did not demonstrate a significant association between coinfection and increased disease severity.ConclusionsViral coinfection was rare among hospitalized COVID-19 patients in the United Kingdom during the first 18 months of the pandemic. With unbiased prospective sampling, we found no evidence of an association between viral coinfection and disease severity. Public health interventions disrupted normal seasonal transmission of respiratory viruses; relaxation of these measures mean it will be important to monitor the prevalence and impact of respiratory viral coinfections going forward.

Journal article

Serger E, Luengo-Gutierrez L, Chadwick JS, Kong G, Zhou L, Crawford G, Danzi MC, Myridakis A, Brandis A, Bello AT, Muller F, Sanchez-Vassopoulos A, De Virgiliis F, Liddell P, Dumas ME, Strid J, Mani S, Dodd D, Di Giovanni Set al., 2022, The gut metabolite indole-3 propionate promotes nerve regeneration and repair, Nature, Vol: 607, Pages: 585-592, ISSN: 0028-0836

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.

Journal article

Norris T, Razieh C, Zaccardi F, Yates T, Islam N, Gillies CL, Chudasama Y, Rowlands A, Davies MJ, McCann GP, Banerjee A, Lam CSP, Docherty AB, Openshaw PJM, Baillie JK, Semple MG, Lawson CA, Khunti Ket al., 2022, Impact of cardiometabolic multimorbidity and ethnicity on cardiovascular/renal complications in patients with COVID-19, Heart, Vol: 108, Pages: 1200-1208, ISSN: 1355-6037

Objective Using a large national database of people hospitalised with COVID-19, we investigated the contribution of cardio-metabolic conditions, multi-morbidity and ethnicity on the risk of in-hospital cardiovascular complications and death.Methods A multicentre, prospective cohort study in 302 UK healthcare facilities of adults hospitalised with COVID-19 between 6 February 2020 and 16 March 2021. Logistic models were used to explore associations between baseline patient ethnicity, cardiometabolic conditions and multimorbidity (0, 1, 2, >2 conditions), and in-hospital cardiovascular complications (heart failure, arrhythmia, cardiac ischaemia, cardiac arrest, coagulation complications, stroke), renal injury and death.Results Of 65 624 patients hospitalised with COVID-19, 44 598 (68.0%) reported at least one cardiometabolic condition on admission. Cardiovascular/renal complications or death occurred in 24 609 (38.0%) patients. Baseline cardiometabolic conditions were independently associated with increased odds of in-hospital complications and this risk increased in the presence of cardiometabolic multimorbidity. For example, compared with having no cardiometabolic conditions, 1, 2 or ≥3 conditions was associated with 1.46 (95% CI 1.39 to 1.54), 2.04 (95% CI 1.93 to 2.15) and 3.10 (95% CI 2.92 to 3.29) times higher odds of any cardiovascular/renal complication, respectively. A similar pattern was observed for all-cause death. Compared with the white group, the South Asian (OR 1.19, 95% CI 1.10 to 1.29) and black (OR 1.53 to 95% CI 1.37 to 1.72) ethnic groups had higher risk of any cardiovascular/renal complication.Conclusions In hospitalised patients with COVID-19, cardiovascular complications or death impacts just under half of all patients, with the highest risk in those of South Asian or Black ethnicity and in patients with cardiometabolic multimorbidity.

Journal article

Wu V, Tillner J, Jones E, McKenzie JS, Gurung D, Mroz A, Poynter L, Simon D, Grau C, Altafaj X, Dumas M-E, Gilmore I, Bunch J, Takats Zet al., 2022, High resolution ambient MS imaging of biological samples by desorption electro-flow focussing ionization, Analytical Chemistry, Vol: 94, Pages: 10035-10044, ISSN: 0003-2700

In this study, we examine the suitability of desorption electro-flow focusing ionization (DEFFI) for mass spectrometry imaging (MSI) of biological tissue. We also compare the performance of desorption electrospray ionization (DESI) with and without the flow focusing setup. The main potential advantages of applying the flow focusing mechanism in DESI is its rotationally symmetric electrospray jet, higher intensity, more controllable parameters, and better portability due to the robustness of the sprayer. The parameters for DEFFI have therefore been thoroughly optimized, primarily for spatial resolution but also for intensity. Once the parameters have been optimized, DEFFI produces similar images to the existing DESI. MS images for mouse brain samples, acquired at a nominal pixel size of 50 μm, are comparable for both DESI setups, albeit the new sprayer design yields better sensitivity. Furthermore, the two methods are compared with regard to spectral intensity as well as the area of the desorbed crater on rhodamine-coated slides. Overall, the implementation of a flow focusing mechanism in DESI is shown to be highly suitable for imaging biological tissue and has potential to overcome some of the shortcomings experienced with the current geometrical design of DESI.

Journal article

Habboub N, Manousou P, Forlano R, Mullish BH, Frost G, Challis B, Thursz M, Dumas M-Eet al., 2022, Designing a polymetabolic risk score for non-alcoholic steatohepatitis patients by differentiating their metabolic profiles from healthy controls, JOURNAL OF HEPATOLOGY, Vol: 77, Pages: S179-S179, ISSN: 0168-8278

Journal article

Menghini R, Hoyles L, Cardellini M, Casagrande V, Marino A, Gentileschi P, Davato F, Mavilio M, Arisi I, Mauriello A, Montanaro M, Scimeca M, Barton RH, Rappa F, Cappello F, Vinciguerra M, Moreno-Navarrete JM, Ricart W, Porzio O, Fernandez-Real J-M, Burcelin R, Dumas M-E, Federici Met al., 2022, ITCH E3 ubiquitin ligase downregulation compromises hepatic degradation of branched-chain amino acids, MOLECULAR METABOLISM, Vol: 59, ISSN: 2212-8778

Journal article

Habboub N, Forlano R, Goldin R, Mullish BH, Frost G, Challis B, Thursz MR, Dumas M-E, Manousou Pet al., 2022, EXAMINING THE CORRELATION OF HISTOLOGICAL FEATURES OF NAFLD WITH A POLYMETABOLIC RISK SCORE FOR PREDICTING PATIENTS WITH NAFLD, GASTROENTEROLOGY, Vol: 162, Pages: S1271-S1271, ISSN: 0016-5085

Journal article

Fromentin S, Forslund SK, Chechi K, Aron-Wisnewsky J, Chakaroun R, Nielsen T, Tremaroli V, Ji B, Prifti E, Myridakis A, Chilloux J, Andrikopoulos P, Fan Y, Olanipekun MT, Alves R, Adiouch S, Bar N, Talmor-Barkan Y, Belda E, Caesar R, Coelho LP, Falony G, Fellahi S, Galan P, Galleron N, Helft G, Hoyles L, Isnard R, Le Chatelier E, Julienne H, Olsson L, Pedersen HK, Pons N, Quinquis B, Rouault C, Roume H, Salem J-E, Schmidt TSB, Vieira-Silva S, Li P, Zimmermann-Kogadeeva M, Lewinter C, Sondertoft NB, Hansen TH, Gauguier D, Gotze JP, Kober L, Kornowski R, Vestergaard H, Hansen T, Zucker J-D, Hercberg S, Letunic I, Backhed F, Oppert J-M, Nielsen J, Raes J, Bork P, Stumvoll M, Segal E, Clement K, Dumas M-E, Ehrlich SD, Pedersen Oet al., 2022, Microbiome and metabolome features of the cardiometabolic disease spectrum, Nature Medicine, Vol: 28, Pages: 303-+, ISSN: 1078-8956

Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages—acute coronary syndrome, chronic IHD and IHD with heart failure—and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.

Journal article

Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C, Duyvesteyn HME, Ginn HM, Mentzer AJ, Tuekprakhon A, Nutalai R, Wang B, Dijokaite A, Khan S, Avinoam O, Bahar M, Skelly D, Adele S, Johnson SA, Amini A, Ritter TG, Mason C, Dold C, Pan D, Assadi S, Bellass A, Omo-Dare N, Koeckerling D, Flaxman A, Jenkin D, Aley PK, Voysey M, Costa Clemens SA, Naveca FG, Nascimento V, Nascimento F, Fernandes da Costa C, Resende PC, Pauvolid-Correa A, Siqueira MM, Baillie V, Serafin N, Kwatra G, Da Silva K, Madhi SA, Nunes MC, Malik T, Openshaw PJM, Baillie JK, Semple MG, Townsend AR, Huang K-YA, Tan TK, Carroll MW, Klenerman P, Barnes E, Dunachie SJ, Constantinides B, Webster H, Crook D, Pollard AJ, Lambe T, OPTIC Consortium, ISARIC4C Consortium, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Schreiber G, Stuart DI, Screaton GRet al., 2022, SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell, Vol: 185, Pages: 467-484.e15, ISSN: 0092-8674

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

Journal article

Talmor-Barkan Y, Bar N, Shaul AA, Shahaf N, Godneva A, Bussi Y, Lotan-Pompan M, Weinberger A, Shechter A, Chezar-Azerrad C, Arow Z, Hammer Y, Chechi K, Forslund SK, Fromentin S, Dumas M-E, Ehrlich SD, Pedersen O, Kornowski R, Segal Eet al., 2022, Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease, NATURE MEDICINE, Vol: 28, Pages: 295-+, ISSN: 1078-8956

Journal article

Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, Marko L, Aron-Wisnewsky J, Nielsen T, Moitinho-Silva L, Schmidt TSB, Falony G, Vieira-Silva S, Adriouch S, Alves RJ, Assmann K, Bastard J-P, Birkner T, Caesar R, Chilloux J, Coelho LP, Fezeu L, Galleron N, Helft G, Isnard R, Ji B, Kuhn M, Le Chatelier E, Myridakis A, Olsson L, Pons N, Prifti E, Quinquis B, Roume H, Salem J-E, Sokolovska N, Tremaroli V, Valles-Colomer M, Lewinter C, Sondertoft NB, Pedersen HK, Hansen TH, Gotze JP, Kober L, Vestergaard H, Hansen T, Zucker J-D, Hercberg S, Oppert J-M, Letunic I, Nielsen J, Backhed F, Ehrlich SD, Dumas M-E, Raes J, Pedersen O, Clement K, Stumvoll M, Bork Pet al., 2021, Combinatorial, additive and dose-dependent drug-microbiome associations, Nature, Vol: 600, Pages: 500-505, ISSN: 0028-0836

During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1,2,3,4,5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug–host–microbiome interactions in cardiometabolic disease.

Journal article

de Silva TI, Liu G, Lindsey BB, Dong D, Moore SC, Hsu NS, Shah D, Wellington D, Mentzer AJ, Angyal A, Brown R, Parker MD, Ying Z, Yao X, Turtle L, Dunachie S, COVID-19 Genomics UK COG-UK Consortium, Maini MK, Ogg G, Knight JC, ISARIC4C Investigators, Peng Y, Rowland-Jones SL, Dong Tet al., 2021, The impact of viral mutations on recognition by SARS-CoV-2 specific T cells., iScience, Vol: 24, Pages: 103353-103353, ISSN: 2589-0042

We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.

Journal article

Nalpas N, Hoyles L, Anselm V, Ganief T, Martinez-Gili L, Grau C, Droste-Borel I, Davidovic L, Altafaj X, Dumas M-E, Macek Bet al., 2021, An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome., Gut Microbes, Vol: 13, Pages: 1-23, ISSN: 1949-0976

Intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, immune responses and behavior. Its dysregulation has been associated with metabolic, immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. Although proteomics is well suited for analysis of individual microbes, metaproteomics of fecal samples is challenging due to the physical structure of the sample, presence of contaminating host proteins and coexistence of hundreds of taxa. Furthermore, there is a lack of consensus regarding preparation of fecal samples, as well as downstream bioinformatic analyses following metaproteomics data acquisition. Here we assess sample preparation and data analysis strategies applied to mouse feces in a typical mass spectrometry-based metaproteomic experiment. We show that subtle changes in sample preparation protocols may influence interpretation of biological findings. Two-step database search strategies led to significant underestimation of false positive protein identifications. Unipept software provided the highest sensitivity and specificity in taxonomic annotation of the identified peptides of unknown origin. Comparison of matching metaproteome and metagenome data revealed a positive correlation between protein and gene abundances. Notably, nearly all functional categories of detected protein groups were differentially abundant in the metaproteome compared to what would be expected from the metagenome, highlighting the need to perform metaproteomics when studying complex microbiome samples.

Journal article

Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Maranhao Costa FT, Santana MF, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, Filho JLDS, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJet al., 2021, A prenylated dsRNA sensor protects against severe COVID-19, Science, Vol: 374, Pages: 1-18, ISSN: 0036-8075

Journal article

Nuzzo A, Guedj K, Curac S, Hercend C, Bendavid C, Gault N, Tran-Dinh A, Ronot M, Nicoletti A, Bouhnik Y, Castier Y, Corcos O, Peoc'h Ket al., 2021, Accuracy of citrulline, I-FABP and d-lactate in the diagnosis of acute mesenteric ischemia, Scientific Reports, Vol: 11, Pages: 1-10, ISSN: 2045-2322

Early diagnosis of acute mesenteric ischemia (AMI) remains a clinical challenge, and no biomarker has been consistently validated. We aimed to assess the accuracy of three promising circulating biomarkers for diagnosing AMI—citrulline, intestinal fatty acid-binding protein (I-FABP), and D-lactate. A cross-sectional diagnostic study enrolled AMI patients admitted to the intestinal stroke center and controls with acute abdominal pain of another origin. We included 129 patients—50 AMI and 79 controls. Plasma citrulline concentrations were significantly lower in AMI patients compared to the controls [15.3 μmol/L (12.0–26.0) vs. 23.3 μmol/L (18.3–29.8), p = 0.001]. However, the area under the receiver operating curves (AUROC) for the diagnosis of AMI by Citrulline was low: 0.68 (95% confidence interval = 0.58–0.78). No statistical difference was found in plasma I-FABP and plasma D-lactate concentrations between the AMI and control groups, with an AUROC of 0.44, and 0.40, respectively. In this large cross-sectional study, citrulline, I-FABP, and D-lactate failed to differentiate patients with AMI from patients with acute abdominal pain of another origin. Further research should focus on the discovery of new biomarkers.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00385113&limit=30&person=true