Imperial College London

DrMarkFriddin

Faculty of EngineeringDyson School of Design Engineering

Imperial College Research Fellow
 
 
 
//

Contact

 

m.friddin

 
 
//

Location

 

Dyson BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

22 results found

Govey-Scotland J, Johnstone L, Myant C, Friddin Met al., 2023, Towards a skin-on-a-chip for screening the dermal absorption of cosmetics, Lab on a Chip: miniaturisation for chemistry, physics, biology, materials science and bioengineering, Vol: 23, Pages: 5068-5080, ISSN: 1473-0189

Over the past few decades, there have been increasing global efforts to limit or ban the use of animals for testing cosmetic products. This ambition has been at the heart of international endeavours to develop new in vitro and animal-free approaches for assessing the safety of cosmetics. While several of these new approach methodologies (NAMs) have been approved for assessing different toxicological endpoints in the UK and across the EU, there remains an absence of animal-free methods for screening for dermal absorption; a measure that assesses the degree to which chemical substances can become systemically available through contact with human skin. Here, we identify some of the major technical barriers that have impacted regulatory recognition of an in vitro skin model for this purpose and propose how these could be overcome on-chip using artificial cells engineered from the bottom-up. As part of our future perspective, we suggest how this could be realised using a digital biomanufacturing pipeline that connects the design, microfluidic generation and 3D printing of artificial cells into user-crafted synthetic tissues. We highlight milestone achievements towards this goal, identify future challenges, and suggest how the ability to engineer animal-free skin models could have significant long-term consequences for dermal absorption screening, as well as for other applications.

Journal article

Strutt R, Hindley JW, Gregg J, Booth PJ, Harling JD, Law RV, Friddin MS, Ces Oet al., 2021, Activating mechanosensitive channels embedded in droplet interface bilayers using membrane asymmetry, Chemical Science, Vol: 12, Pages: 2138-2145, ISSN: 2041-6520

Droplet microcompartments linked by lipid bilayers show great promise in the construction of synthetic minimal tissues. Central to controlling the flow of information in these systems are membrane proteins, which can gate in response to specific stimuli in order to control the molecular flux between membrane separated compartments. This has been demonstrated with droplet interface bilayers (DIBs) using several different membrane proteins combined with electrical, mechanical, and/or chemical activators. Here we report the activation of the bacterial mechanosensitive channel of large conductance (MscL) in a dioleoylphosphatidylcholine:dioleoylphosphatidylglycerol DIB by controlling membrane asymmetry. We show using electrical measurements that the incorporation of lysophosphatidylcholine (LPC) into one of the bilayer leaflets triggers MscL gating in a concentration-dependent manner, with partial and full activation observed at 10 and 15 mol% LPC respectively. Our findings could inspire the design of new minimal tissues where flux pathways are dynamically defined by lipid composition.

Journal article

Haylock S, Friddin M, Hindley J, Rodriguez E, Charalambous K, Booth P, Barter L, Ces Oet al., 2020, Membrane protein mediated bilayer communication in networks of droplet interface bilayers, Communications Chemistry, Vol: 3, ISSN: 2399-3669

Droplet interface bilayers (DIBs) are model membranes formed between lipid monolayer-encased water droplets in oil. Compared to conventional methods, one of the most unique properties of DIBs is that they can be connected together to generate multi-layered ‘tissue-like’ networks, however introducing communication pathways between these compartments typically relies on water-soluble pores that are unable to gate. Here, we show that network connectivity can instead be achieved using a water-insoluble membrane protein by successfully reconstituting a chemically activatable mutant of the mechanosensitive channel MscL into a network of DIBs. Moreover, we also show how the small molecule activator can diffuse through an open channel and across the neighbouring droplet to activate MscL present in an adjacent bilayer. This demonstration of membrane protein mediated bilayer communication could prove key toward developing the next generation of responsive bilayer networks capable of defining information flow inside a minimal tissue.

Journal article

Friddin MS, Elani Y, Trantidou T, Ces Oet al., 2019, New directions for artificial cells using rapid prototyped biosystems, Analytical Chemistry, Vol: 91, Pages: 4921-4928, ISSN: 0003-2700

Microfluidics has been shown to be capable of generating a range of single- and multi- compartment vesicles and bilayer delineated droplets that can be assembled in 2D and 3D. These model systems are becoming increasingly recognized as powerful biomimetic constructs for assembling tissue models, engineering therapeutic delivery systems and for screening drugs. One bottleneck in developing this technology is the time, expertise and equipment required for device fabrication. This has led to interest across the microfluidics community in using rapid prototyping to engineer microfluidic devices from Computer Aided Design (CAD) drawings. We highlight how this rapid prototyping revolution is transforming the fabrication of microfluidic devices for bottom-up synthetic biology. We provide an outline of the current landscape and present how advances in the field may give rise to the next generation of multifunctional biodevices, particularly with Industry 4.0 on the horizon. Successfully developing this technology and making it open-source could pave the way for a new generation of citizen-led science, fueling the possibility that the next multi-billion dollar start-up could emerge from an attic or a basement.

Journal article

Friddin M, Bolognesi G, Salehi-Reyhani A, Ces O, Elani Yet al., 2019, Direct manipulation of liquid ordered lipid membrane domains using optical traps, Communications Chemistry, Vol: 2, Pages: 1-7, ISSN: 2399-3669

Multicomponent lipid bilayers can give rise to coexisting liquid domains that are thought to influence a host of cellular activities. There currently exists no method to directly manipulate such domains, hampering our understanding of their significance. Here we report a system that allows individual liquid ordered domains that exist in a liquid disordered matrix to be directly manipulated using optical tweezers. This allows us to drag domains across the membrane surface of giant vesicles that are adhered to a glass surface, enabling domain location to be defined with spatiotemporal control. We can also use the laser to select individual vesicles in a population to undergo mixing/demixing by locally heating the membrane through the miscibility transition, demonstrating a further layer of control. This technology has potential as a tool to shed light on domain biophysics, on their role in biology, and in sculpting membrane assemblies with user-defined membrane patterning.

Journal article

Trantidou T, Friddin M, Gan KB, Han L, Bolognesi G, Brooks N, Ces Oet al., 2018, Mask-free laser lithography for rapid and low-cost microfluidic device fabrication, Analytical Chemistry, Vol: 90, Pages: 13915-13921, ISSN: 0003-2700

Microfluidics has become recognized as a powerful platform technology associated with a constantly increasing array of applications across the life sciences. This surge of interest over recent years has led to an increased demand for microfluidic chips, resulting in more time being spent in the cleanroom fabricating devices using soft lithography—a slow and expensive process that requires extensive materials, training and significant engineering resources. This bottleneck limits platform complexity as a byproduct of lengthy delays between device iterations and affects the time spent developing the final application. To address this problem, we report a new, rapid, and economical approach to microfluidic device fabrication using dry resist films to laminate laser cut sheets of acrylic. We term our method laser lithography and show that our technique can be used to engineer 200 μm width channels for assembling droplet generators capable of generating monodisperse water droplets in oil and micromixers designed to sustain chemical reactions. Our devices offer high transparency, negligible device to device variation, and low X-ray background scattering, demonstrating their suitability for real-time X-ray-based characterization applications. Our approach also requires minimal materials and apparatus, is cleanroom free, and at a cost of around $1.00 per chip could significantly democratize device fabrication, thereby increasing the interdisciplinary accessibility of microfluidics.

Journal article

Trantidou T, Friddin M, Salehi-Reyhani S, Ces O, Elani Yet al., 2018, Droplet microfluidics for the construction of compartmentalised model membranes, Lab on a Chip, Vol: 18, Pages: 2488-2509, ISSN: 1473-0189

The design of membrane-based constructs with multiple compartments is of increasing importance given their potential applications as microreactors, as artificial cells in synthetic-biology, as simplified cell models, and as drug delivery vehicles. The emergence of droplet microfluidics as a tool for their construction has allowed rapid scale-up in generation throughput, scale-down of size, and control over gross membrane architecture. This is true on several levels: size, level of compartmentalisation and connectivity of compartments can all be programmed to various degrees. This tutorial review explains and explores the reasons behind this. We discuss microfluidic strategies for the generation of a family of compartmentalised systems that have lipid membranes as the basic structural motifs, where droplets are either the fundamental building blocks, or are precursors to the membrane-bound compartments. We examine the key properties associated with these systems (including stability, yield, encapsulation efficiency), discuss relevant device fabrication technologies, and outline the technical challenges. In doing so, we critically review the state-of-play in this rapidly advancing field.

Journal article

Bolognesi G, Friddin MS, Salehi-Reyhani S, Barlow N, Brooks NJ, Ces O, Elani Yet al., 2018, Sculpting and fusing biomimetic vesicle networks using optical tweezers, Nature Communications, Vol: 9, Pages: 1-11, ISSN: 2041-1723

Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components.

Journal article

Karamdad K, Hindley J, Friddin MS, Bolognesi G, Law RV, Brooks NJ, Ces O, Elani Yet al., 2018, Engineering thermoresponsive phase separated vesicles formed via emulsion phase transfer as a content-release platform, Chemical Science, Vol: 9, Pages: 4851-4858, ISSN: 2041-6520

Giant unilamellar vesicles (GUVs) are a well-established tool for the study of membrane biophysics and are increasingly used as artificial cell models and functional units in biotechnology. This trend is driven by the development of emulsion-based generation methods such as Emulsion Phase Transfer (EPT), which facilitates the encapsulation of almost any water-soluble compounds (including biomolecules) regardless of size or charge, is compatible with droplet microfluidics, and allows GUVs with asymmetric bilayers to be assembled. However, the ability to control the composition of membranes formed via EPT remains an open question; this is key as composition gives rise to an array of biophysical phenomena which can be used to add functionality to membranes. Here, we evaluate the use of GUVs constructed via this method as a platform for phase behaviour studies and take advantage of composition-dependent features to engineer thermally-responsive GUVs. For the first time, we generate ternary GUVs (DOPC/DPPC/cholesterol) using EPT, and by compensating for the lower cholesterol incorporation efficiencies, show that these possess the full range of phase behaviour displayed by electroformed GUVs. As a demonstration of the fine control afforded by this approach, we demonstrate release of dye and peptide cargo when ternary GUVs are heated through the immiscibility transition temperature, and show that release temperature can be tuned by changing vesicle composition. We show that GUVs can be individually addressed and release triggered using a laser beam. Our findings validate EPT as a suitable method for generating phase separated vesicles and provide a valuable proof-of-concept for engineering content release functionality into individually addressable vesicles, which could have a host of applications in the development of smart synthetic biosystems.

Journal article

Thomas JM, Friddin MS, Ces O, Elani Yet al., 2017, Programming membrane permeability using integrated membrane pores and blockers as molecular regulators, Chemical Communications, Vol: 53, Pages: 12282-12285, ISSN: 1359-7345

We report a bottom-up synthetic biology approach to engineering vesicles with programmable permeabilities. Exploiting the concentration-dependent relationship between constitutively active pores (alpha-hemolysin) and blockers allows blockers to behave as molecular regulators for tuning permeability, enabling us to systematically modulate cargo release kinetics without changing the lipid fabric of the system.

Journal article

de Bruin A, Friddin MS, Elani Y, Brooks N, Law R, Seddon J, Ces Oet al., 2017, A transparent 3D printed device for assembling droplet hydrogel bilayers (DHBs), RSC Advances, Vol: 7, Pages: 47796-47800, ISSN: 2046-2069

We report a new approach for assembling droplet hydrogel bilayers (DHBs) using a transparent 3D printed device. We characterise the transparency of our platform, confirm bilayer formation using electrical measurements and show that single-channel recordings can be obtained using our reusable rapid prototyped device. This method significantly reduces the cost and infrastructure required to develop devices for DHB assembly and downstream study.

Journal article

Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces Oet al., 2017, Engineering compartmentalized biomimetic micro- and nanocontainers, ACS Nano, Vol: 11, Pages: 6549-6565, ISSN: 1936-086X

Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.

Journal article

Barlow NE, Smpokou E, Friddin MS, Macey R, Gould I, Turnbull C, Flemming AJ, Brooks NJ, Ces O, Barter LMCet al., 2017, Engineering plant membranes using droplet interface bilayers, Biomicrofluidics, Vol: 11, ISSN: 1932-1058

Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana, tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

Journal article

Chan CL, Bolognesi G, Bhandarkar A, Friddin M, Brooks NJ, Seddon J, Law R, Barter L, Ceset al., 2016, DROPLAY: laser writing of functional patterns within biological microdroplet displays, Lab on a Chip, Vol: 16, Pages: 4621-4627, ISSN: 1473-0197

In this study, we introduce an optofluidic method for the rapid construction of large-area cell-sized droplet assemblieswith user-defined re-writable two-dimensional patterns of functional droplets. Light responsive water-in-oil dropletscapable of releasing fluorescent dye molecules upon exposure were generated and self-assembled into arrays in amicrofluidic device. This biological architecture was exploited by the scanning laser of a confocal microscope to ‘write’ userdefined patterns of differentiated (fluorescent) droplets in a network of originally undifferentiated (non-fluorescent)droplets. As a result, long lasting images were produced on a droplet fabric with droplets acting as pixels of a biologicalmonitor, which can be erased and re-written on-demand. Regio-specific light-induced droplet differentiation within a largepopulation of droplets provides a new paradigm for the rapid construction of bio-synthetic systems with potential as tissuemimics and biological display materials.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, ces Oet al., 2016, Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets, Soft Matter, Vol: 12, Pages: 7731-7734, ISSN: 1744-6848

We report a new platform technology to systematically assemble droplet interface bilayer (DIB) networks in user-defined 3D architectures from cell-sized droplets using optical tweezers. Our OptiDIB platform is the first demonstration of optical trapping to precisely construct 3D DIB networks, paving the way for the development of a new generation of modular bio-systems.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, Ces Oet al., 2016, The optical assembly of bilayer networks from cell-sized droplets for synthetic biology, Systems and Synthetic Biology

Conference paper

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, Ces Oet al., 2016, Optical tweezers to assemble 2D and 3D droplet interface bilayer networks from cell-sized droplets, EMBL Microfluidics

Conference paper

Ces O, Elani Y, Karamdad K, Friddin MS, Barter LMC, Bolognesi G, Law RV, Chan CL, Brooks NJ, Seddon JMet al., 2016, Novel microfluidic technologies for the bottom-up construction of artificial cells

This talk will outline novel microfluidic strategies for biomembrane engineering that are capable of fabricating vesicles [1], droplet interface bilayer networks [2], multisomes [3] and artificial tissues [4] where parameters such as membrane asymmetry, membrane curvature, compartment connectivity and individual compartment contents can be controlled. Various bulk methods, such as extrusion, gentle hydration and electroformation, have been synonymous with the formation of lipid vesicles over recent years. However these strategies suffer from significant shortcomings associated with these processes including limited control of vesicle structural parameters such as size, lamellarity, membrane composition and internal contents. To address this technological bottleneck we have developed novel microfluidic platforms to form lipid vesicles in high-Throughput with full control over the composition of both the inner and outer leaflet of the membrane thereby enabling the manufacture of symmetric and asymmetric vesicles. This is achieved by manufacturing microfluidic channels with a step junction, produced by double-layer photolithography, which facilitates the transfer of a W/O emulsion across an oil-water phase boundary and the self-Assembly of a phospholipid bilayer. These platforms are being used to explore the role of asymmetry in biological systems [1] and study the engineering rules that regulate membrane mediated protein-protein interactions [5]. In addition, these technologies are enabling the construction of biological machines capable of acting as micro-reactors [6], environmental sensors and smart delivery vehicles [5] as well as complex multi-compartment artificial cells where the contents and connectivity of each compartment can be controlled. These compartments are separated by biological functional membranes that can facilitate transport between the compartments themselves and between the compartments and external environment. This approach has led to the deve

Conference paper

Friddin MS, Bolognesi G, Elani Y, Brooks NJ, Law RV, Seddon JM, Neil MAA, Ces Oet al., 2016, Light-driven drag and drop assembly of micron-scale bilayer networks for synthetic biology, Pages: 545-546

We have developed a new method to assemble single- or multi-layered networks of droplet interface bilayers (DIBs) from cell-sized droplets using a single beam optical trap (optical tweezers). The novelty of our approach is the ability to directly trap the microdroplets with the laser and manipulate them in 3D to construct DIB networks of user-defined architectures. Our method does not require a complex optical setup, is versatile, contactless, benefits from both high spatial and temporal resolution, and could set a new paradigm for the assembly of smart, synthetic biosystems.

Conference paper

Friddin MS, Morgan H, de Planque MR, 2013, Cell-free protein expression systems in microdroplets: Stabilization of interdroplet bilayers, Biomicrofluidics, Vol: 7, ISSN: 1932-1058

Cell-free protein expression with bacterial lysates has been demonstrated to produce soluble proteins in microdroplets. However, droplet assays with expressed membrane proteins require the presence of a lipid bilayer. A bilayer can be formed in between lipid-coated aqueous droplets by bringing these into contact by electrokinetic manipulation in a continuous oil phase, but it is not known whether such interdroplet bilayers are compatible with high concentrations of biomolecules. In this study, we have characterized the lifetime and the structural integrity of interdroplet bilayers by measuring the bilayer current in the presence of three different commercial cell-free expression mixtures and their individual components. Samples of pure proteins and of a polymer were included for comparison. It is shown that complete expression mixtures reduce the bilayer lifetime to several minutes or less, and that this is mainly due to the lysate fraction itself. The fraction that contains the molecules for metabolic energy generation does not reduce the bilayer lifetime but does give rise to current steps that are indicative of lipid packing defects. Gel electrophoresis confirmed that proteins are only present at significant amounts in the lysate fractions and, when supplied separately, in the T7 enzyme mixture. Interestingly, it was also found that pure-protein and pure-polymer solutions perturb the interdroplet bilayer at higher concentrations; 10% (w/v) polyethylene glycol 8000 (PEG 8000) and 3 mM lysozyme induce large bilayer currents without a reduction in bilayer lifetime, whereas 3 mM albumin causes rapid bilayer failure. It can, therefore, be concluded that the high protein content of the lysates and the presence of PEG polymer, a typical lysate supplement, compromise the structural integrity of interdroplet bilayers. However, we established that the addition of lipid vesicles to the cell-free expression mixture stabilizes the interdroplet bilayer, allowing

Journal article

Friddin MS, Smithers NP, Beaugrand M, Marcotte I, Williamson PTF, Morgan H, de Planque MRRet al., 2013, Single-channel electrophysiology of cell-free expressed ion channels by direct incorporation in lipid bilayers, ANALYST, Vol: 138, Pages: 7294-7298, ISSN: 0003-2654

Journal article

Friddin MS, Smithers N, Lee T, Morgan H, de Planque Met al., 2012, Cell-free expression and electrophysiological measurements of the KcsA channel with interdroplet bilayers, NanoBioTech

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00853105&limit=30&person=true