Imperial College London

ProfessorMichaelBell

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Senior Research Investigator
 
 
 
//

Contact

 

m.g.h.bell

 
 
//

Assistant

 

Mrs Maya Mistry +44 (0)20 7594 6100

 
//

Location

 

Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

224 results found

Cheung K-F, Bell MGH, Bhattacharjya J, 2021, Cybersecurity in logistics and supply chain management: An overview and future research directions, TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, Vol: 146, ISSN: 1366-5545

Journal article

Raadsen MPH, Bliemer MCJ, Bell MGH, 2020, Aggregation, disaggregation and decomposition methods in traffic assignment: historical perspectives and new trends, TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, Vol: 139, Pages: 199-223, ISSN: 0191-2615

Journal article

Cheung K-F, Bell MGH, Pan J-J, Perera Set al., 2020, An eigenvector centrality analysis of world container shipping network connectivity, TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, Vol: 140, ISSN: 1366-5545

Journal article

Bell MGH, Pan J-J, Teye C, Cheung K-F, Perera Set al., 2020, An entropy maximizing approach to the ferry network design problem, Transportation Research Part B: Methodological: an international journal, Vol: 132, Pages: 15-28, ISSN: 0191-2615

This paper proposes a novel method to address the ferry network design problem (FNDP). Ferry transport is an increasingly important component of public transport, providing mobility for people in large cities with harbours or rivers. It is therefore important that ferry networks are well designed. The connections between ferry stations and the locations of hubs that are optimal for passengers are revealed by the maximum passenger utility spanning tree connecting all ferry stations. This paper harnesses the equivalence between entropy maximisation and utility maximisation to find the maximum passenger utility spanning tree which connects all ferry stations. A small example with five ferry stations illustrates how the spanning tree topology responds to the pattern of passenger demand. Two heuristics for solving the problem are compared for the Sydney Harbour ferry network with 36 ferry stations. One heuristic reveals the most important connections between ferry stations from a passenger perspective. The use of maximum passenger utility spanning trees for ferry network design is discussed.

Journal article

Bliemer MCJ, Waller ST, Bell MGH, Hickman MDet al., 2019, Special issue on dynamic traffic assignment for general transport networks, TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, Vol: 126, Pages: 307-308, ISSN: 0191-2615

Journal article

Pan J-J, Bell MGH, Cheung K-F, Perera S, Yu Het al., 2019, Connectivity analysis of the global shipping network by eigenvalue decomposition, MARITIME POLICY & MANAGEMENT, Vol: 46, Pages: 957-966, ISSN: 0308-8839

Journal article

Perera S, Kasthurirathna D, Bell M, Bliemer Met al., 2019, Topological rationality of supply chain networks, INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, Vol: 58, Pages: 3126-3149, ISSN: 0020-7543

Journal article

Liu Z, Miwa T, Zeng W, Bell MGH, Morikawa Tet al., 2019, Dynamic shared autonomous taxi system considering on-time arrival reliability, Transportation Research Part C: Emerging Technologies, Vol: 103, Pages: 281-297

Journal article

Achurra-Gonzalez PE, Novati M, Foulser-Piggott R, Graham DJ, Bowman G, Bell MGH, Angeloudis Pet al., 2019, Modelling the impact of liner shipping network perturbations on container cargo routing: Southeast Asia to Europe application, Accident Analysis & Prevention, Vol: 123, Pages: 399-410

Understanding how container routing stands to be impacted by different scenarios of liner shipping network perturbations such as natural disasters or new major infrastructure developments is of key importance for decision-making in the liner shipping industry. The variety of actors and processes within modern supply chains and the complexity of their relationships have previously led to the development of simulation-based models, whose application has been largely compromised by their dependency on extensive and often confidential sets of data. This study proposes the application of optimisation techniques less dependent on complex data sets in order to develop a quantitative framework to assess the impacts of disruptive events on liner shipping networks. We provide a categorization of liner network perturbations, differentiating between systemic and external and formulate a container assignment model that minimises routing costs extending previous implementations to allow feasible solutions when routing capacity is reduced below transport demand. We develop a base case network for the Southeast Asia to Europe liner shipping trade and review of accidents related to port disruptions for two scenarios of seismic and political conflict hazards. Numerical results identify alternative routing paths and costs in the aftermath of port disruptions scenarios and suggest higher vulnerability of intra-regional connectivity.

Journal article

Perera S, Bell MGH, Kurauchi F, Kasthurirathna Det al., 2019, Absorbing Markov Chain Approach to Modelling Disruptions in Supply Chain Networks, Moratuwa Engineering Research Conference (MERCon) / 5th International Multidisciplinary Engineering Research Conference, Publisher: IEEE, Pages: 515-520

Conference paper

Hedderich M, Fastenrath U, Cao Z, Bell M, Bogenberger Ket al., 2019, An Integrated Approach for a Universal Routing Algorithm, IEEE Intelligent Transportation Systems Conference (IEEE-ITSC), Publisher: IEEE, Pages: 3088-3093, ISSN: 2153-0009

Conference paper

Perera SS, Bell MGH, Latty T, 2019, Disassortativity in Biological and Supply Chain Networks

Journal article

Raadsen MPH, Bliemer MCJ, Bell MGH, 2019, A review of (dis) aggregation and decomposition methods in traffic assignment

Journal article

Zavitsas K, Zis T, Bell MGH, 2018, The impact of flexible environmental policy on maritime supply chain resilience, Transport Policy, Vol: 72, Pages: 116-128, ISSN: 0967-070X

As policy makers acknowledge the high degree of supply chain vulnerability and the impact of maritime emissions on coastal population health, there has been a consistent effort to strengthen maritime security and environmental regulations. In recent years, overdependence on deeper and wider multinational supply and production chains and lean-optimization has led to tightly integrated systems with little “slack” and high sensitivity to disruptions.This study considers the impact of Emission Control Areas and establishes a link between environmental and network resilience performance for maritime supply chains using operational cost andemissions cost metrics. The proposed methodological framework analyzes various abatement options, disruption intensities, fuel pricing instances and regulatory strategies. The methodology utilizes a minimum cost flow assignment and an arc velocity optimization model for vessel speed to establish the payoff for various network states. Additionally, an attacker defender game is set up to identify optimal regulatory strategies under various disruption scenarios. The results are complemented by a sensitivity analysis on emissions pricing, to better equip policy makers to manage environmental and resilience legislation. The methodology and findings provide a comprehensive analytic approach to optimize maritime supply chain performance beyond minimisation of operational costs, to also minimize exposure to costly supply chain disruptions.

Journal article

Teye C, Bell MGH, Bliemer MCJ, 2018, Locating urban and regional container terminals in a competitive environment: An entropy maximising approach, 22nd International Symposium on Transportation and Traffic Theory (ISTTT), Publisher: PERGAMON-ELSEVIER SCIENCE LTD, Pages: 971-985, ISSN: 0191-2615

Conference paper

Perera SS, Bell MGH, Piraveenan M, Kasthurirathna D, Parhi Met al., 2018, Topological structure of manufacturing industry supply chain networks, Complexity, Vol: 2018

Journal article

Liu Z, Miwa T, Zeng W, Bell MGH, Morikawa Tet al., 2018, Shared Autonomous Taxi System and Utilization of Collected Travel-Time Information, Journal of Advanced Transportation, Vol: 2018

Journal article

Geers G, Bell MG, 2018, A network ménage à trois: communications, smart grid and transportation

Conference paper

Lam JSL, Lun YHV, Bell MGH, 2018, Risk management in port and maritime logistics, Publisher: Pergamon

Other

Perera S, Bell M, Bliemer M, 2018, Network Science approach to Modelling Emergence and Topological Robustness of Supply Networks: A Review and Perspective, arXiv preprint arXiv:1803.09913

Journal article

Perera S, Bell MGH, Kurauchi F, Bliemer MCJ, Kasthurirathna Det al., 2018, Consumer Surplus based Method for Quantifying and Improving the Material Flow Supply Chain Network Robustness

Journal article

Paflioti P, Vitsounis TK, Teye C, Bell MGH, Tsamourgelis Iet al., 2017, Box dynamics: A sectoral approach to analyse containerized port throughput interdependencies, Transportation Research Part A: Policy and Practice, Vol: 106, Pages: 396-413

Journal article

Perera S, Bell MGH, Bliemer MCJ, 2017, Network science approach to modelling the topology and robustness of supply chain networks: a review and perspective, Applied Network Science, Vol: 2, Pages: 1-25, ISSN: 2364-8228

Due to the increasingly complex and interconnected nature of global supply chain networks (SCNs), a recent strand of research has applied network science methods to model SCN growth and subsequently analyse various topological features, such as robustness. This paper provides: (1) a comprehensive review of the methodologies adopted in literature for modelling the topology and robustness of SCNs; (2) a summary of topological features of the real world SCNs, as reported in various data driven studies; and (3) a discussion on the limitations of existing network growth models to realistically represent the observed topological characteristics of SCNs. Finally, a novel perspective is proposed to mimic the SCN topologies reported in empirical studies, through fitness based generative network models.

Journal article

Teye C, Bell MGH, Bliemer MCJ, 2017, Locating urban and regional container terminals in a competitive environment: an entropy maximising approach, Transportation Research Procedia, Vol: 23, Pages: 208-227, ISSN: 2352-1465

A flexible and policy-oriented model based on the principle of entropy maximisation is proposed for locating competitive multiuser freight facilities in general and inland multi-user intermodal container terminals (IMTs) in particular in a context where multiple users have choices which include whether or not to use the facilities. The overall problem is decomposed into a linked facility location problem (FLP) and a mode choice problem (MCP). The MCP is cast as a three-level nested probability model for determining modal and IMT demands. It was shown that for terminals with sufficiently large handling capacities, the objective function of the overall problem reduces to that of the MCP, the result is a single level mathematical program, which locates facilities to maximise shippers’ expected utility or consumer surplus. The model is suitable for urban or regional planning, but may also be used by terminal operators to estimate shipper demand for given locations. Algorithms for solving the model, principal features of the algorithms and the model are also presented.

Journal article

Teye C, Bell MGH, Bliemer MCJ, 2017, Urban intermodal terminals: The entropy maximising facility location problem, Transportation Research Part B: Methodological, Vol: 100, Pages: 64-81

Journal article

Bell MGH, Kurauchi F, Perera S, Wong Wet al., 2017, Investigating transport network vulnerability by capacity weighted spectral analysis, Transportation Research Part B: Methodological: an international journal, Vol: 99, Pages: 251-266, ISSN: 0191-2615

ransport networks operating at or near capacity are vulnerable to disruptions, so flow bottlenecks are potent sources of vulnerability. This paper presents an efficient method for finding transport network cuts, which may constitute such bottlenecks. Methods for assessing network vulnerability found in the literature require origin-destination demands and path assignment. However, in transport network planning and design, demand information is often missing, out of date, partial or inaccurate. Capacity weighted spectral partitioning is proposed to identify potential flow bottlenecks in the network, without reference to demand information or path assignments. This method identifies the network cut with least capacity, taking into account the relative sizes of the sub-networks either side of the cut. Spectral analysis has the added advantage of tractability, even for large networks, as shown by numerical examples for a five-node illustrative example, the Sioux Falls road network and the Gifu Prefecture road network.

Journal article

Teye C, Bell MGH, Bliemer MCJ, 2017, Entropy maximising facility location model for port city intermodal terminals, Transportation Research Part E: Logistics and Transportation Review, Vol: 100, Pages: 1-16

Journal article

Miwa T, Bell MGH, 2017, Efficiency of routing and scheduling system for small and medium size enterprises utilizing vehicle location data, Journal of Intelligent Transportation Systems, Vol: 21, Pages: 239-250

Journal article

Nikhalat-Jahromi H, Angeloudis P, Bell MGH, Cochrane RAet al., 2017, Global LNG trade: A comprehensive up to date analysis, Maritime Economics & Logistics, Vol: 19, Pages: 160-181

Journal article

Bell M, Perera S, Piraveenan M, Bliemer M, Latty T, Reid Cet al., 2017, Network growth models: A behavioural basis for attachment proportional to fitness, Scientific reports, Vol: 7, Pages: 42431-42431

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00347131&limit=30&person=true