Imperial College London

Michael J Jeger

Faculty of Natural SciencesDepartment of Life Sciences (Silwood Park)

Emeritus Professor of Horticulture
 
 
 
//

Contact

 

+44 (0)1398 332 941m.jeger Website

 
 
//

Location

 

Home working 13 Brook Street, Bampton, Devon EX16 9LUSilwood ParkSilwood Park

//

Summary

 

Publications

Citation

BibTex format

@article{Cunniffe:2021:10.1371/journal.pcbi.1009759,
author = {Cunniffe, NJ and Taylor, NP and Hamelin, FM and Jeger, MJ},
doi = {10.1371/journal.pcbi.1009759},
journal = {PLoS Computational Biology},
pages = {1--41},
title = {Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission.},
url = {http://dx.doi.org/10.1371/journal.pcbi.1009759},
volume = {17},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Many plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector's own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding-as well as potential effects of infection on vector population density-on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics.
AU - Cunniffe,NJ
AU - Taylor,NP
AU - Hamelin,FM
AU - Jeger,MJ
DO - 10.1371/journal.pcbi.1009759
EP - 41
PY - 2021///
SN - 1553-734X
SP - 1
TI - Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission.
T2 - PLoS Computational Biology
UR - http://dx.doi.org/10.1371/journal.pcbi.1009759
UR - https://www.ncbi.nlm.nih.gov/pubmed/34968387
UR - https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009759
UR - http://hdl.handle.net/10044/1/93588
VL - 17
ER -