Imperial College London

ProfessorMichaelJohnson

Faculty of MedicineDepartment of Brain Sciences

Professor of Neurology and Genomic Medicine
 
 
 
//

Contact

 

m.johnson Website

 
 
//

Location

 

E419Burlington DanesHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

128 results found

Jesuthasan A, Barwick T, Dixon L, Molloy S, Johnson MR, Tomlinson Jet al., 2023, LGI1 encephalitis and IGG4-related disease. Rare conditions collide, Neurology: Neuroimmunology & Neuroinflammation, Vol: 10, ISSN: 2332-7812

Objectives: Leucine-rich glioma-inactivated 1 (LGI1) encephalitis and IgG4-related disease (IgG4RD) have traditionally been regarded as 2 distinct disease entities.Methods: We detail the presentation, investigations, and management of a patient who showed typical signs and symptoms of LGI1 encephalitis and also found to possess pancreatic changes and a serum profile in keeping with IgG4RD.Results: Serum and CSF analyses at presentation showed a significant hyponatraemia (117 mmol/L), elevated IgG4 concentration (1.73 g/L), and the presence of LGI1 antibodies. MRI revealed symmetrical diffuse T2-weighted hyperintensity and mild swelling throughout both medial temporal lobes. CT of the chest, abdomen and pelvis revealed an edematous, bulky pancreas with loss of lobulation, typical for IgG4RD. A glucocorticoid weaning regimen was commenced, facilitated by 2 rituximab infusions, with the patient showing an effective treatment response. HLA testing confirmed the presence of HLA DRB1 and HLA DQB1 risk alleles.Discussion: This case suggests that there may be shared mechanisms between LGI1 encephalitis and IgG4RD, supported by common risk HLA associations and treatment strategies/responses. To our knowledge, this represents the first instance that LGI1 encephalitis and IgG4RD have been reported in the same patient and emphasizes the continued development of our understanding of the wide range of IgG4-mediated conditions.

Journal article

Boothman I, Clayton LM, Mccormack M, Driscoll AM, Stevelink R, Moloney P, Krause R, Kunz WS, Diehl S, O'Brien TJ, Sills GJ, de Haan G-J, Zara F, Koeleman BP, Depondt C, Marson AG, Stefansson H, Stefansson K, Craig J, Johnson MR, Striano P, Lerche H, Furney SJ, Delanty N, EpiPGX Consortium A, Sisodiya SM, Cavalleri GLet al., 2023, Testing for pharmacogenomic predictors of ppRNFL thinning in individuals exposed to vigabatrin, FRONTIERS IN NEUROSCIENCE, Vol: 17

Journal article

International League Against Epilepsy Consortium on Complex Epilepsies, 2023, GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture, Nature Genetics, Vol: 55, Pages: 1471-1482, ISSN: 1061-4036

Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment.

Journal article

Montanucci L, Lewis-Smith D, Collins RL, Niestroj L-M, Parthasarathy S, Xian J, Ganesan S, Macnee M, Brünger T, Thomas RH, Talkowski M, Epi25 Collaborative, Helbig I, Leu C, Lal Det al., 2023, Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals, Nature Communications, Vol: 14, Pages: 1-19, ISSN: 2041-1723

Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice.

Journal article

Mahmud M, Wade C, Jawad S, Hadi Z, Otoul C, Kaminski RM, Muglia P, Kadiu I, Rabiner E, Maguire P, Johnson M, Owen Det al., 2023, Translocator protein PET imaging in temporal lobe epilepsy: a reliable test-retest study using laterality index, Frontiers in Neuroimaging, Vol: 2, Pages: 1-10, ISSN: 2813-1193

ObjectiveTranslocator-protein (TSPO) targeting positron emission tomography (PET) imaging radioligands have potential utility in epilepsy to assess the efficacy of novel therapeutics for targeting neuroinflammation. However, previous studies in healthy volunteers have indicated limited test-retest reliability of TSPO ligands. Here we examine test retest measures using TSPO PET imaging in subjects with epilepsy and healthy controls, to explore whether this biomarker can be used an endpoint in clinical trials for epilepsy.MethodsFive subjects with epilepsy and confirmed mesial temporal lobe sclerosis (mean age 36 years, 3 male) were scanned twice – on average 8 weeks apart – using a second generation TSPO targeting radioligand, [11C]PBR28. We evaluated the test-retest reliability of the volume of distribution and derived hemispheric asymmetry index of [11C]PBR28 binding in these subjects and compared the results with 8 (mean age 45, 6 male) previously studied healthy volunteers.ResultsThe mean (± SD) of the volume of distribution (VT), of all subjects, in patients living with epilepsy for both test and retest scans on all regions of interest is 4.49 ± 1.54, versus 5.89 ±1.23 in healthy volunteers. The bias between test and retest in asymmetry index as % was small (-1.5%) and reliability is demonstrated here with Bland-Altman Plots (test mean 1.062, retest mean 2.56). In subjects with epilepsy, VT of [11C]PBR28 is higher in the (ipsilateral) hippocampal region where sclerosis is present than in the contralateral region.ConclusionWhen using TSPO PET in epilepsy patients with hippocampal sclerosis, inter-hemispheric asymmetry index in the hippocampus is a measure with good test-retest reliability. We provide estimates of test-retest variability that may be useful for estimating power where group change in VT represents the clinic outcome.

Journal article

Lovisari F, Roncon P, Soukoupova M, Paolone G, Labasque M, Ingusci S, Falcicchia C, Marino P, Johnson M, Rossett T, Petretto E, Leclercq K, Kaminski RM, Moyon B, Webster Z, Simonato M, Zucchini Set al., 2022, Implication of sestrin3 in epilepsy and its comorbidities (vol 3, fcaa130, 2021), BRAIN COMMUNICATIONS, Vol: 4

Journal article

Feleke R, Jazayeri D, Abouzeid M, Powell KL, Srivastava PK, O'Brien TJ, Jones NC, Johnson MRet al., 2022, Integrative genomics reveals pathogenic mediator of valproate-induced neurodevelopmental disability, Brain: a journal of neurology, Vol: 145, Pages: 3832-3842, ISSN: 0006-8950

Prenatal exposure to the anti-seizure medication sodium valproate (VPA) is associated with an increased risk of adverse postnatal neurodevelopmental outcomes, including lowered intellectual ability, autism spectrum disorder and attention-deficit hyperactivity disorder. In this study, we aimed to clarify the molecular mechanisms underpinning the neurodevelopmental consequences of gestational VPA exposure using integrative genomics. First, we assessed the effect of gestational VPA on fetal brain gene expression using a validated rat model of valproate teratogenicity that mimics the human scenario of chronic oral valproate treatment during pregnancy at doses which are therapeutically relevant to the treatment of epilepsy. Two different rat strains were studied - inbred Genetic Absence Epilepsy Rats from Strasbourg (GAERS), a model of genetic generalized epilepsy, and inbred Non-Epileptic Control rats. Female rats were fed standard chow or VPA mixed in standard chow for 2 weeks prior to conception and then mated with same-strain males. In the VPA-exposed rats maternal oral treatment was continued throughout pregnancy. Fetuses were extracted via C-section on gestational day 21 (one day prior to birth) and fetal brains were snap frozen and genome-wide gene expression data generated. We found that gestational VPA exposure via chronic maternal oral dosing was associated with substantial drug-induced differential gene expression in the pup brains, including dysregulated splicing, and observed that this occurred in the absence of evidence for significant neuronal gain or loss. The functional consequences of VPA-induced gene expression were explored using pathway analysis and integration with genetic risk data for psychiatric disease and behavioural traits. The set of genes down-regulated by VPA in the pup brains were significantly enriched for pathways related to neurodevelopment and synaptic function, and significantly enriched for heritability to human intelligence, schizop

Journal article

Olona A, Hateley C, Guerrero A, Ko J-H, Johnson MR, Anand PK, Thomas D, Gil J, Behmoaras Jet al., 2022, Cardiac glycosides cause cytotoxicity in human macrophages and ameliorate white adipose tissue homeostasis, British Journal of Pharmacology, Vol: 179, Pages: 1874-1886, ISSN: 0007-1188

Background and purpose: Cardiac glycosides (CGs) inhibit the Na+,K+‐ATPase and are widely prescribed medicines for chronic heart failure and cardiac arrhythmias. Recently, CGs have been described to induce inflammasome activation and pyroptosis in human macrophages, suggesting a cytotoxicity that remains to be elucidated in tissues.Experimental approach: To determine the cell type specificity of CG‐mediated cytotoxicity, we used human primary monocyte‐derived macrophages (hMDMs) and non‐adherent peripheral blood cells isolated from healthy donors. Omental white adipose tissue (WAT) and stromal vascular fraction (SVF)‐derived pre‐adipocytes and adipocytes were isolated from obese patients undergoing bariatric surgery. All these primary cells/tissues were treated with nanomolar concentrations of ouabain (50nM, 100nM and 500nM) to investigate its degree of cytotoxicity and mechanisms leading to cell death. In WAT, we further explored the consequences of ouabain‐mediated cytotoxicity by measuring insulin sensitivity, adipose tissue function and extracellular matrix (ECM) deposition ex vivo.Key results: The ouabain‐induced cell death is through pyroptosis and apoptosis, and more efficient in hMDMs compared to non‐adherent PBMC populations. This selective cytotoxicity is dependent on K+ flux, as ouabain causes an intracellular depletion of K+, while inducing accumulation of Na+ and Ca2+ levels. Consistently, the cell‐death caused by these ion imbalances can be rescued by addition of potassium chloride in hMDMs. Remarkably, when WAT explants from obese patients are cultured with nanomolar concentrations of ouabain, this causes depletion of macrophages, down‐regulation of type VI collagen levels, and amelioration of insulin sensitivity ex vivo.Conclusions and implications: These results suggest that the usage of nanomolar concentration of CGs can be an attractive therapeutic avenue in metabolic syndrome characterised by pathogenic infiltration and activation of macrophages.

Journal article

Campbell C, Lewis-Smith D, Leu C, Martins H, Krause R, O'Brien T, Sills G, Zara F, Koeleman B, Depondt C, Marson A, Stefannson H, Craig J, Johnson MR, Striano P, Jorgensen A, Lerche H, Delanty N, Sisodiya S, Thomas R, Cavalleri GLet al., 2022, Polygenic risk score analysis reveals shared genetic burden between epilepsy and psychiatric comorbidities, ., Publisher: SPRINGERNATURE, Pages: 31-32, ISSN: 1018-4813

Conference paper

Meijer M, Agirre E, Kabbe M, van Tuijn CA, Heskol A, Zheng C, Mendanha Falcão A, Bartosovic M, Kirby L, Calini D, Johnson MR, Corces MR, Montine TJ, Chen X, Chang HY, Malhotra D, Castelo-Branco Get al., 2022, Epigenomic priming of immune genes implicates oligodendroglia in multiple sclerosis susceptibility, Neuron, Vol: 110, Pages: 1193-1210.e13, ISSN: 0896-6273

Multiple sclerosis (MS) is characterized by a targeted attack on oligodendroglia (OLG) and myelin by immune cells, which are thought to be the main drivers of MS susceptibility. We found that immune genes exhibit a primed chromatin state in single mouse and human OLG in a non-disease context, compatible with transitions to immune-competent states in MS. We identified BACH1 and STAT1 as transcription factors involved in immune gene regulation in oligodendrocyte precursor cells (OPCs). A subset of immune genes presents bivalency of H3K4me3/H3K27me3 in OPCs, with Polycomb inhibition leading to their increased activation upon interferon gamma (IFN-γ) treatment. Some MS susceptibility single-nucleotide polymorphisms (SNPs) overlap with these regulatory regions in mouse and human OLG. Treatment of mouse OPCs with IFN-γ leads to chromatin architecture remodeling at these loci and altered expression of interacting genes. Thus, the susceptibility for MS may involve OLG, which therefore constitutes novel targets for immunological-based therapies for MS.

Journal article

Koko M, Krause R, Sander T, Bobbili DR, Nothnagel M, May P, Lerche H, Epi25 Collaborativeet al., 2021, Distinct gene-set burden patterns underlie common generalized and focal epilepsies, EBioMedicine, Vol: 72, Pages: 1-13, ISSN: 2352-3964

BACKGROUND: Analyses of few gene-sets in epilepsy showed a potential to unravel key disease associations. We set out to investigate the burden of ultra-rare variants (URVs) in a comprehensive range of biologically informed gene-sets presumed to be implicated in epileptogenesis. METHODS: The burden of 12 URV types in 92 gene-sets was compared between cases and controls using whole exome sequencing data from individuals of European descent with developmental and epileptic encephalopathies (DEE, n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), or non-acquired focal epilepsy (NAFE, n = 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. FINDINGS: Missense URVs in highly constrained regions were enriched in neuron-specific and developmental genes, whereas genes not expressed in brain were not affected. GGE featured a higher burden in gene-sets derived from inhibitory vs. excitatory neurons or associated receptors, whereas the opposite was found for NAFE, and DEE featured a burden in both. Top-ranked susceptibility genes from recent genome-wide association studies (GWAS) and gene-sets derived from generalized vs. focal epilepsies revealed specific enrichment patterns of URVs in GGE vs. NAFE. INTERPRETATION: Missense URVs affecting highly constrained sites differentially impact genes expressed in inhibitory vs. excitatory pathways in generalized vs. focal epilepsies. The excess of URVs in top-ranked GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants in the pathogenesis of generalized and focal epilepsies. FUNDING: DFG Research Unit FOR-2715 (Germany), FNR (Luxembourg), NHGRI (US), NHLBI (US), DAAD (Germany).

Journal article

Motelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng Y-CA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, OBrien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, Hengsbach C, Rau S, Steinhoff BJ, Schulze-Bonhage A, Borggräfe I, Schankin CJ, Schubert-Bast S, Schreiber H, Mayer T, Korinthenberg R, Brockmann K, Wolff M, Dennig D, Madeleyn R, Kälviäinen R, Saarela A, Timonen O, Linnankivi T, Lehesjoki A-E, Rheims S, Lesca G, Ryvlin P, Maillard L, Valton L, Derambure P, Bartolomei F, Hirsch E, Michel V, Chassoux F, Rees MI, Chung S-K, Pickrell WO, Powell R, Baker MD, Fonferko-Shadrach B, Lawthom C, Anderson J, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CHT, Delanty N, Doherty CP, Shukralla A, El-Naggar H, Widdess-Walsh P, Barišić N, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Ragona F, Zara F, Iacomino M, Riva A, Madia F, Vari MS, Salpietro V, Scala M, Mancardi MM, Nobili L, Amadori E, Giacomini T, Bisulli F, Pippucci T Let al., 2021, Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals, The American Journal of Human Genetics, Vol: 108, Pages: 2024-2024, ISSN: 0002-9297

Journal article

De T, Goncalves A, Speed D, Froguel P, Gaffney DJ, Johnson MR, Jarvelin M-R, Coin LJMet al., 2021, Signatures of TSPAN8 variants associated with human metabolic regulation and diseases, iScience, Vol: 24, ISSN: 2589-0042

Here, with the example of common copy number variation (CNV) in the TSPAN8 gene, we present an important piece of work in the field of CNV detection, that is, CNV association with complex human traits such as 1H NMR metabolomic phenotypes and an example of functional characterization of CNVs among human induced pluripotent stem cells (HipSci). We report TSPAN8 exon 11 (ENSE00003720745) as a pleiotropic locus associated with metabolomic regulation and show that its biology is associated with several metabolic diseases such as type 2 diabetes (T2D) and cancer. Our results further demonstrate the power of multivariate association models over univariate methods and define metabolomic signatures for variants in TSPAN8.

Journal article

Feleke R, Reynolds RH, Smith AM, Tilley B, Taliun SAG, Hardy J, Matthews PM, Gentleman S, Owen DR, Johnson MR, Srivastava PK, Ryten Met al., 2021, Cross-platform transcriptional profiling identifies common and distinct molecular pathologies in Lewy body diseases, Acta Neuropathologica, Vol: 142, Pages: 449-474, ISSN: 0001-6322

Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular "window" of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.

Journal article

Wolking S, Moreau C, McCormack M, Krause R, Krenn M, Berkovic S, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Kunz WS, Lerche H, Marson AG, O'Brien TJ, Petrovski S, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Sisodiya SM, Girard SL, Cossette Pet al., 2021, Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy, ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, Vol: 8, Pages: 1376-1387, ISSN: 2328-9503

Journal article

Wolking S, Campbell C, Stapleton C, McCormack M, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Krause R, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Sisodiya SM, Cavalleri GL, Lerche Het al., 2021, Role of Common Genetic Variants for Drug-Resistance to Specific Anti-Seizure Medications, FRONTIERS IN PHARMACOLOGY, Vol: 12, ISSN: 1663-9812

Journal article

Allen AS, Aggarwal V, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Freyer C, Goldstein DB, Guerrini R, Glauser T, Heinzen EL, Johnson MR, Kuzniecky R, Lowenstein DH, Marson AG, Mefford HC, O'Brien TJ, Ottman R, Poduri A, Petrou S, Petrovski S, Ruzzo EK, Scheffer IE, Sherr EH, Abou-Khalil B, Amrom D, Andermann E, Andermann F, Berkovic SF, Bluvstein J, Boro A, Cascino G, Consalvo D, Crumrine P, Devinsky O, Dlugos D, Fountain N, Freyer C, Friedman D, Geller E, Glynn S, Haas K, Haut S, Joshi S, Kirsch H, Knowlton R, Kossoff E, Kuzniecky R, Lowenstein DH, Motika PV, Ottman R, Paolicchi JM, Parent JM, Poduri A, Scheffer IE, Shellhaas RA, Sherr EH, Shih JJ, Shinnar S, Singh RK, Sperling M, Smith MC, Sullivan J, Vining EPG, Von Allmen GK, Widdess-Walsh P, Winawer MR, Bautista J, Fiol M, Glauser T, Hayward J, Helmers S, Park K, Sirven J, Thio LL, Venkat A, Weisenberg J, Kuperman R, McGuire S, Novotny E, Sadleir Let al., 2021, Diverse genetic causes of polymicrogyria with epilepsy, EPILEPSIA, Vol: 62, Pages: 973-983, ISSN: 0013-9580

Journal article

Lovisari F, Roncon P, Soukoupova M, Paolone G, Labasque M, Ingusci S, Falcicchia C, Marino P, Johnson M, Rossetti T, Petretto E, Leclercq K, Kaminski RM, Moyon B, Webster Z, Simonato M, Zucchini Set al., 2021, Implication of sestrin3 in epilepsy and its comorbidities, Brain Communications, Vol: 3, ISSN: 2632-1297

Epilepsy is a serious neurological disorder affecting about 1% of the population worldwide. Epilepsy may arise as a result of acquired brain injury, or as a consequence of genetic predisposition. To date, genome-wide association studies and exome sequencing approaches have provided limited insights into the mechanisms of acquired brain injury. We have previously reported a pro-epileptic gene network, which is conserved across species, encoding inflammatory processes and positively regulated by sestrin3 (SESN3). In this study, we investigated the phenotype of SESN3 knock-out rats in terms of susceptibility to seizures and observed a significant delay in status epilepticus onset in SESN3 knock-out compared to control rats. This finding confirms previous in vitro and in vivo evidence indicating that SESN3 may favour occurrence and/or severity of seizures. We also analysed the phenotype of SESN3 knock-out rats for common comorbidities of epilepsy, i.e., anxiety, depression and cognitive impairment. SESN3 knock-out rats proved less anxious compared to control rats in a selection of behavioural tests. Taken together, the present results suggest that SESN3 may regulate mechanisms involved in the pathogenesis of epilepsy and its comorbidities.

Journal article

Balabanova S, Taylor C, Sills G, Burnside G, Plumpton C, Smith PEM, Appleton R, Leach JP, Johnson M, Baker G, Pirmohamed M, Hughes DA, Williamson PR, Tudur-Smith C, Marson AGet al., 2020, Study protocol for a pragmatic randomised controlled trial comparing the effectiveness and cost-effectiveness of levetiracetam and zonisamide versus standard treatments for epilepsy: a comparison of standard and new antiepileptic drugs (SANAD-II), BMJ Open, Vol: 10, ISSN: 2044-6055

Introduction Antiepileptic drugs (AEDs) are the mainstay of epilepsy treatment. Over the past 20 years, a number of new drugs have been approved for National Health Service (NHS) use on the basis of information from short-term trials that demonstrate efficacy. These trials do not provide information about the longer term outcomes, which inform treatment policy. This trial will assess the long-term clinical and cost-effectiveness of the newer treatment levetiracetam and zonisamide.Methods and analysis This is a phase IV, multicentre, open-label, randomised, controlled clinical trial comparing new and standard treatments for patients with newly diagnosed epilepsy. Arm A of the trial randomised 990 patients with focal epilepsy to standard AED lamotrigine or new AED levetiracetam or zonisamide. Arm B randomised 520 patients with generalised epilepsy to standard AED sodium valproate or new AED levetiracetam. Patients are recruited from UK NHS outpatient epilepsy, general neurology and paediatric clinics. Included patients are aged 5 years or older with two or more spontaneous seizures requiring AED monotherapy, who are not previously treated with AEDs. Patients are followed up for a minimum of 2 years. The primary outcome is time to 12-month remission from seizures. Secondary outcomes include time to treatment failure (including due to inadequate seizure control or unacceptable adverse reactions); time to first seizure; time to 24-month remission; adverse reactions and quality of life. All primary analyses will be on an intention to treat basis. Separate analyses will be undertaken for each arm. Health economic analysis will be conducted from the perspective of the NHS to assess the cost-effectiveness of each AED.Ethics and dissemination This trial has been approved by the North West-Liverpool East REC (Ref. 12/NW/0361). The trial team will disseminate the results through scientific meetings, peer-reviewed publications and patient and public involvement.

Journal article

Schijven D, Stevelink R, McCormack M, van Rheenen W, Luykx JJ, Koeleman BPC, Veldink JHet al., 2020, Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy, Neurobiology of Aging, Vol: 92, Pages: 153.e1-153.e5, ISSN: 0197-4580

Journal article

Kondratiuk A, Muraro P, Johnson M, Sing-Curry V, Pritchard J, Dorsey R, Nicholas R, Scalfari Aet al., 2020, The Use of Rituximab in Neurological Diseases; Real World Data from a Neuroscience Centre, Annual Meeting of the American-Academy-of-Neurology, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0028-3878

Conference paper

Wolking S, Schulz H, Nies AT, McCormack M, Schaeffeler E, Auce P, Avbersek A, Becker F, Klein KM, Krenn M, Moller RS, Nikanorova M, Weckhuysen S, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Weber YG, Krause R, Sisodiya S, Schwab M, Sander T, Lerche Het al., 2020, Pharmacoresponse in genetic generalized epilepsy: a genome-wide association study, PHARMACOGENOMICS, Vol: 21, Pages: 325-335, ISSN: 1462-2416

Journal article

Wolking S, Moreau C, Nies AT, Schaeffeler E, McCormack M, Auce P, Avbersek A, Becker F, Krenn M, Møller RS, Nikanorova M, Weber YG, Weckhuysen S, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Kunz WS, Marson AG, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Schwab M, Krause R, Sisodiya SM, Cossette P, Girard SL, Lerche H, EpiPGX Consortiumet al., 2020, Testing association of rare genetic variants with resistance to three common antiseizure medications, Epilepsia, Vol: 61, Pages: 657-666, ISSN: 0013-9580

OBJECTIVE: Drug resistance is a major concern in the treatment of individuals with epilepsy. No genetic markers for resistance to individual antiseizure medication (ASM) have yet been identified. We aimed to identify the role of rare genetic variants in drug resistance for three common ASMs: levetiracetam (LEV), lamotrigine (LTG), and valproic acid (VPA). METHODS: A cohort of 1622 individuals of European descent with epilepsy was deeply phenotyped and underwent whole exome sequencing (WES), comprising 575 taking LEV, 826 LTG, and 782 VPA. We performed gene- and gene set-based collapsing analyses comparing responders and nonresponders to the three drugs to determine the burden of different categories of rare genetic variants. RESULTS: We observed a marginally significant enrichment of rare missense, truncating, and splice region variants in individuals who were resistant to VPA compared to VPA responders for genes involved in VPA pharmacokinetics. We also found a borderline significant enrichment of truncating and splice region variants in the synaptic vesicle glycoprotein (SV2) gene family in nonresponders compared to responders to LEV. We did not see any significant enrichment using a gene-based approach. SIGNIFICANCE: In our pharmacogenetic study, we identified a slightly increased burden of damaging variants in gene groups related to drug kinetics or targeting in individuals presenting with drug resistance to VPA or LEV. Such variants could thus determine a genetic contribution to drug resistance.

Journal article

Kobow K, Reid CA, van Vliet EA, Becker AJ, Carvill GL, Goldman AM, Hirose S, Lopes-Cendes I, Khiari HM, Poduri A, Johnson MR, Henshall DCet al., 2020, Epigenetics explained: a topic "primer" for the epilepsy community by the ILAE Genetics/Epigenetics Task Force, EPILEPTIC DISORDERS, Vol: 22, Pages: 127-141, ISSN: 1294-9361

Journal article

Schidlitzki A, Bascuñana P, Srivastava PK, Welzel L, Twele F, Töllner K, Käufer C, Gericke B, Feleke R, Meier M, Polyak A, Ross TL, Gerhauser I, Bankstahl JP, Johnson MR, Bankstahl M, Löscher Wet al., 2020, Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy, Neurobiology of Disease, Vol: 134, Pages: 1-16, ISSN: 0969-9961

Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed network-based approaches to prevent epileptogenesis. For proof of concept we combined two drugs (levetiracetam and topiramate) for which in silico analysis of drug-protein interaction networks indicated a synergistic effect on a large functional network of epilepsy-relevant proteins. Using the intrahippocampal kainate mouse model of temporal lobe epilepsy, the drug combination was administered during the latent period before onset of spontaneous recurrent seizures (SRS). When SRS were periodically recorded by video-EEG monitoring after termination of treatment, a significant decrease in incidence and frequency of SRS was determined, indicating antiepileptogenic efficacy. Such efficacy was not observed following single drug treatment. Furthermore, a combination of levetiracetam and phenobarbital, for which in silico analysis of drug-protein interaction networks did not indicate any significant drug-drug interaction, was not effective to modify development of epilepsy. Surprisingly, the promising antiepileptogenic effect of the levetiracetam/topiramate combination was obtained in the absence of any significant neuroprotective or anti-inflammatory effects as indicated by multimodal brain imaging and histopathology. High throughput RNA-sequencing (RNA-seq) of the ipsilateral hippocampus of mice treated with the levetiracetam/topiramate combination showed that several genes that have been linked previously to epileptogenesis, were significantly differentially expressed, providing interesting entry points for future mechanistic studies. Overall, we have discovered a novel combination treatment with promise for prevention of epilepsy.

Journal article

Miller TD, Chong TT-J, Aimola Davies AM, Johnson MR, Irani SR, Husain M, Ng TW, Jacob S, Maddison P, Kennard C, Gowland PA, Rosenthal CRet al., 2020, Human hippocampal CA3 damage disrupts both recent and remote episodic memories, eLife, Vol: 9, ISSN: 2050-084X

Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance.

Journal article

Johnson MR, 2020, Re: Time to move beyond genetics towards biomedical data-driven translational genomic research in severe paediatric epilepsies., European Journal of Paediatric Neurology, Vol: 24, Pages: 4-4, ISSN: 1090-3798

Journal article

Heavin SB, McCormack M, Wolking S, Slattery L, Walley N, Avbersek A, Novy J, Sinha SR, Radtke R, Doherty C, Auce P, Craig J, Johnson MR, Koeleman BPC, Krause R, Kunz WS, Marson AG, O'Brien TJ, Sander JW, Sills GJ, Stefansson H, Striano P, Zara F, EPIGEN Consortium, EpiPGX Consortium, Depondt C, Sisodiya S, Goldstein D, Lerche H, Cavalleri GL, Delanty Net al., 2019, Genomic and clinical predictors of lacosamide response in refractory epilepsies, Epilepsia Open, Vol: 4, Pages: 563-571, ISSN: 2470-9239

Objective: Clinical and genetic predictors of response to antiepileptic drugs (AEDs) are largely unknown. We examined predictors of lacosamide response in a real-world clinical setting. Methods: We tested the association of clinical predictors with treatment response using regression modeling in a cohort of people with refractory epilepsy. Genetic assessment for lacosamide response was conducted via genome-wide association studies and exome studies, comprising 281 candidate genes. Results: Most patients (479/483) were treated with LCM in addition to other AEDs. Our results corroborate previous findings that patients with refractory genetic generalized epilepsy (GGE) may respond to treatment with LCM. No clear clinical predictors were identified. We then compared 73 lacosamide responders, defined as those experiencing greater than 75% seizure reduction or seizure freedom, to 495 nonresponders (<25% seizure reduction). No variants reached the genome-wide significance threshold in our case-control analysis. Significance: No genetic predictor of lacosamide response was identified. Patients with refractory GGE might benefit from treatment with lacosamide.

Journal article

Johnson MR, Kaminski RM, 2019, A systems-level framework for anti-epilepsy drug discovery, Neuropharmacology, Vol: 170, Pages: 1-15, ISSN: 0028-3908

Modern anti-seizure drug development yielded benefits in terms of improved pharmacokinetics, safety and tolerability profiles, but offered no advances in efficacy compared to previous older generations of anti-seizure drugs. Despite significant advances in our understanding of the genetic bases to epilepsy, and a welcome renewed interest on the severe monogenic epilepsies, modern genetics has yet to directly inform more effective or disease-modifying anti-seizure drugs. Here, we describe a new approach to the identification of novel disease modifying anti-epilepsy drugs. The systems genetics approach aims to first identify pathophysiological mechanisms by integrating polygenic risk with cellular gene expression profiles and then to relate these molecular mechanisms to druggable targets using a gene regulatory (regulome) framework. The approach offers an exciting and flexible framework for future drug discovery in epilepsy, and is applicable to any disease for which appropriate cell-type and disease-context specific data exist.

Journal article

Leu C, Stevelink R, Smith AW, Goleva SB, Kanai M, Ferguson L, Campbell C, Kamatani Y, Okada Y, Sisodiya SM, Cavalleri GL, Koeleman BPC, Lerche H, Jehi L, Davis LK, Najm IM, Palotie A, Daly MJ, Busch RM, Epi25 Consortium, Lal Det al., 2019, Polygenic burden in focal and generalized epilepsies., Brain, Vol: 142, Pages: 3473-3481

Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japanese-ancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64×10-15; Cleveland: P = 2.85×10-4; Finnish-ancestry Epi25: P = 1.80×10-4) or population controls (Epi25: P = 2.35×10-70; Cleveland: P = 1.43×10-7; Finnish-ancestry Epi25: P = 3.11×10-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99×10-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74×10-19; Cleveland: P = 1.69×10-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish Europ

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00426886&limit=30&person=true