Imperial College London

ProfessorMichaelLowe

Faculty of EngineeringDepartment of Mechanical Engineering

Head of Department of Mechanical Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 7000m.lowe Website

 
 
//

Assistant

 

Ms Nina Hancock +44 (0)20 7594 7068

 
//

Location

 

577DCity and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

309 results found

Haslinger SG, Lowe MJS, Wang Z, Shi Fet al., 2021, Time of flight diffraction for rough planar defects, NDT and E International, Vol: 124, ISSN: 0963-8695

Ultrasonic non-destructive evaluation techniques, such as time-of-flight diffraction (ToFD) for which the arrival times of waves diffracted from crack tips are analysed to locate and size defects, are well understood for smooth defects. In environments where extreme changes in temperature and pressure occur, the damage that may arise is often non-uniform and more difficult to characterise when designing and qualifying an inspection. This article investigates the implementation of ToFD methods for sizing rough defects using a purely theoretical approach. High-fidelity finite element modelling and stochastic Monte Carlo methods are used to provide physical and statistical insights for the dependence on both incident beam angle and degree of roughness for the case of planar defects. Optimal incident angles for ultrasonic ToFD techniques were determined in the 1980s but largely based on theoretical and experimental investigations for smooth defects. However, rough defects produce tip-diffracted signatures that are more complicated than for their smooth counterparts, largely due to multiple scattering effects related to mode conversion and propagation of surface waves along the rough surface. It is shown that roughness may cause larger diffraction amplitude values at different angles, which leads to increased uncertainty when sizing, with illustrative examples and physical interpretations provided. Comparisons of amplitudes for smooth and rough defects of the same size are also demonstrated. The ToFD method, using envelope peak detection and autocorrelation approaches, is implemented to estimate the size of rough cracks, and the effects of roughness on the accuracy of this sizing are investigated with statistical analysis.

Journal article

Liu Y, Kalkowski MK, Huang M, Lowe MJS, Samaitis V, Cicėnas V, Schumm Aet al., 2021, Can ultrasound attenuation measurement be used to characterise grain statistics in castings?, Ultrasonics, Vol: 115, Pages: 106441-106441, ISSN: 0041-624X

Industrial inspection protocols are qualified using mock-ups manufactured according to the same procedure as the plant part. For coarse-grained castings, known for their low inspectability, relying on mock-ups becomes particularly challenging owing to the variability of grain properties among components. Consequently, there is a keen interest in the capability to verify whether the grain size of the component under test matches the qualification specification in-situ. This paper investigates the potential of an attenuation measurement for assessing the ultrasonic inspectability of coarse-grained components using qualified procedures in a practical setting. The experimental part of the study focuses on an industrial Inconel 600 mock-up with spatially varying attenuation, measured across the entire sample in an immersion tank. Three zones with distinctly different attenuations were examined using metallography, which allowed for calculating classical grain size histograms and two-point correlation functions. For one of the zones, we synthesised the microstructure with the same statistical properties numerically and simulated the propagation of ultrasound using a grain-scale finite element model. The results showed good agreement with the experiment, and lead to several suggestions for the reasons for the discrepancy, the varying grain size statistics being the most likely. A parametric study, which followed, depicted the effect of the mean and standard deviation-to-mean ratio of the log-normal grain size distribution on the attenuation of ultrasound and its frequency dependence. Most notably, we demonstrated the known non-uniqueness of the relationship between the log-normal grain size distribution parameters and the attenuation. We suggested that the correlation length calculated from a single exponential fit to the two-point correlation function is a more robust metric describing grain statistics for this context, which can be obtained from attenuation. The correlat

Journal article

Kalkowski MK, Lowe MJS, Barth M, Rjelka M, Köhler Bet al., 2021, How does grazing incidence ultrasonic microscopy work? A study based on grain-scale numerical simulations, Ultrasonics, Vol: 114, ISSN: 0041-624X

Grazing incidence ultrasonic microscopy (GIUM) is an experimental method for visualising the microstructures of polycrystals with local preferential orientations. It has previously been demonstrated on an austenitic stainless steel weld, exposing grains much smaller than the propagating wavelength, but the physical mechanism of the method has only been proposed as a hypothesis. In this paper, we use grain-scale finite element simulations based on the EBSD measurements to verify the principles behind GIUM images further and to assess how deep does the method penetrate the component under examination. The simulations indicate that while lateral contraction of grains contains microstructure signatures, the free surface effect is the crucial factor contributing to the generation of the images. Further, we show that only features up to the depth in the order of the average grain size in that direction can be visualised.

Journal article

Sarris G, Haslinger SG, Huthwaite P, Nagy PB, Lowe MJSet al., 2021, Attenuation of Rayleigh waves due to surface roughness, Journal of the Acoustical Society of America, Vol: 149, Pages: 4298-4308, ISSN: 0001-4966

Rayleigh waves are well known to attenuate due to scattering when they propagate over a rough surface. Theoretical investigations have derived analytical expressions linking the attenuation coefficient to statistical surface roughness parameters, namely, the surface's root mean squared height and correlation length and the Rayleigh wave's wavenumber. In the literature, three scattering regimes have been identified—the geometric (short wavelength), stochastic (short to medium wavelength), and Rayleigh (long wavelength) regimes. This study uses a high-fidelity two-dimensional finite element (FE) modelling scheme to validate existing predictions and provide a unified approach to studying the problem of Rayleigh wave scattering from rough surfaces as the same model can be used to obtain attenuation values regardless of the scattering regime. In the Rayleigh and stochastic regimes, very good agreement is found between the theory and FE results both in terms of the absolute attenuation values and for asymptotic power relationships. In the geometric regime, power relationships are obtained through a combination of dimensional analysis and FE simulations. The results here also provide useful insight into verifying the three-dimensional theory because the method used for its derivation is analogous.

Journal article

Huang M, Rokhlin S, Lowe MJS, 2021, Finite element evaluation of a simple model for elastic waves in strongly scattering elongated polycrystals, JASA Express Letters, Vol: 1, Pages: 1-8, ISSN: 2691-1191

A simple semi-analytical model for longitudinal scattering-induced attenuation and phase velocity is proposed for strongly scattering cubic polycrystals with statistically elongated grains. It is formulated by iterating the Born approximation of the far-field approximation model and by empirically increasing the coefficient in the quadratic term for the elastic scattering factor. The comparison with the three-dimensional grain-scale finite element calculations shows excellent performance of the semi-analytical model for both attenuation and phase velocity in all studied frequency ranges and especially in the Rayleigh regime in which, for strongly scattering materials, the existing analytical models significantly disagree with the numerical results.

Journal article

Huang M, Sha G, Huthwaite P, Rokhlin S, Lowe MJSet al., 2021, Longitudinal wave attenuation in polycrystals with elongated grains: 3D numerical and analytical modeling, Journal of the Acoustical Society of America, Vol: 149, Pages: 2377-2394, ISSN: 0001-4966

This work develops a second-order approximation (SOA) model and a three-dimensional (3D) finite element (FE) model to calculate scattering-induced attenuation for elastic wave propagation in polycrystals with elongated grains of arbitrary crystal symmetry. The SOA model accounts for some degree of multiple scattering, whereas the 3D FE model includes all scattering possibilities. The SOA model incorporates the accurate geometric two-point correlation function obtained from the FE material systems to enable comparative studies between the two models. Also, the analytical Rayleigh and stochastic asymptotes are presented to provide explicit insights into propagation behaviors. Quantitative agreement is found between the FE and analytical models for all evaluated cases. In particular, the FE simulations support the SOA model prediction that grain shape does not exert influence on attenuation in the Rayleigh regime and its effect emerges as frequency increases to the stochastic regime showing anisotropy in attenuation. This attenuation anisotropy intensifies with the increase in frequency, but it exhibits a complicated behavior as frequency transits into the geometric regime. Wavefield fluctuations captured from the FE simulations are provided to help observe these complex scattering behaviors. The proportionality of attenuation to elastic scattering factors is also quantitatively evaluated.

Journal article

Shipway NJ, Huthwaite P, Lowe MJS, Barden TJet al., 2021, Using ResNets to perform automated defect detection for Fluorescent Penetrant Inspection, Independent Nondestructive Testing and Evaluation (NDT and E) International, Vol: 119, Pages: 102400-102400, ISSN: 0963-8695

Fluorescent Penetrant Inspection (FPI) is a popular Non-Destructive Testing (NDT) method which is used extensively in the aerospace industry. However, the nature of FPI means results are susceptible to the effects of human factors and this can lead to variable results, making automation desirable. Previous work has investigated the use of established machine learning method Random Forest to perform automated defect detection for FPI. Whilst good results were obtained, there was still a significant number of false positives being identified as defective. This paper presents work done to investigate the potential of using deep learning methods to perform automated defect detection.A dataset was obtained from a set of 99 titanium alloy test pieces with cracks induced using thermal fatigue loading. These test pieces were repeatedly processed and using data augmentation a large dataset was obtained. This data was used to train a ResNet34 and ResNet50 architecture as well as a Random Forest. Two significant results were obtained. Firstly, the ResNet50 is able to create a network capable of detecting 95% of defects with a false call rate of 0.07. This result far exceeded that obtained using the Random Forest method despite both methods only having access to a small dataset. This demonstrated the strong capability of deep learning architectures. The second result was that increasing the amount of data obtained from non defective regions significantly increases performance. This result is encouraging as this data, obtained from non-cracked parts, can be quickly and cheaply obtained by reprocessing test pieces.

Journal article

Haslinger SG, Lowe MJS, Craster R, Huthwaite P, Shi Fet al., 2021, Prediction of reflection amplitudes for ultrasonic inspection of rough planar defects, Insight, Vol: 63, Pages: 28-36, ISSN: 2156-485X

The characteristics of planar defects (no loss of material volume) that arise during industrial plant operation are difficult to predict in detail, yet these can affect the performance of non-destructive testing (NDT) used to manage plant structural integrity. Inspection modelling is increasingly used to design and assess ultrasonic inspections of such plant items. While modelling of smooth planar defects is relatively mature and validated, issues have remained in the treatment of rough planar defect species. The qualification of ultrasonic inspections for such defects is presently very conservative, owing to the uncertainty of the amplitudes of rough surface reflections. Pragmatic solutions include the addition of large sensitivity thresholds and more frequent inspection intervals, which require more plant downtime. In this article, an alternative approach has been developed by the authors to predict the expected surface reflection from a rough defect using a theoretical statistical model. Given only the frequency, angle of incidence and two statistical parameter values used to characterise the defects, the expected reflection amplitude is obtained rapidly for any scattering angle and size of defect, for both compression and shear waves. The method is applicable for inspections of isotropic media that feature surface reflections such as pulse-echo or pitch-catch, rather than for tip signal-dependent techniques such as time-of-flight diffraction. The potential impact for inspection qualification is significant, with the new model predicting increases of up to 20 dB in signal amplitude in comparison with models presently used in industry. All mode conversions are included and rigorous validations using numerical and experimental methods have been performed. The model has been instrumental in obtaining new statistically significant results related to the effect of tilt; the expected pulse-echo backscattered amplitude for very rough planar defects is independent of til

Journal article

Huang M, Sha G, Huthwaite P, Rokhlin S, Lowe MJSet al., 2020, Elastic wave velocity dispersion in polycrystals with elongated grains: Theoretical and numerical analysis, Journal of the Acoustical Society of America, Vol: 148, Pages: 3645-3662, ISSN: 0001-4966

The phase velocity dispersion of longitudinal waves in polycrystals with elongated grains of arbitrary crystallographic symmetry is studied in all frequency ranges by the theoretical second-order approximation (SOA) and numerical three-dimensional finite element (FE) models. The SOA and FE models are found to be in excellent agreement for three studied polycrystals: cubic Al, Inconel, and a triclinic material system. A simple Born approximation for the velocity, not containing the Cauchy integrals, and the explicit analytical quasi-static velocity limit (Rayleigh asymptote) are derived. As confirmed by the FE simulations, the velocity limit provides an accurate velocity estimate in the low-frequency regime where the phase velocity is nearly constant on frequency; however, it exhibits dependence on the propagation angle. As frequency increases, the phase velocity increases towards the stochastic regime and then, with further frequency increase, behaves differently depending on the propagation direction. It remains nearly constant for the wave propagation in the direction of the smaller ellipsoidal grain radius and decreases in the grain elongation direction. In the Rayleigh and stochastic frequency regimes, the directional velocity change shows proportionalities to the two elastic scattering factors even for the polycrystal with the triclinic grain symmetry.

Journal article

Huang M, Sha G, Huthwaite P, Rokhlin SI, Lowe MJSet al., 2020, Maximizing the accuracy of finite element simulation of elastic wave propagation in polycrystals, Journal of the Acoustical Society of America, Vol: 148, Pages: 1890-1910, ISSN: 0001-4966

Three-dimensional finite element (FE) modelling, with representation of materials at grain scale in realistic sample volumes, is capable of accurately describing elastic wave propagation and scattering within polycrystals. A broader and better future use of this FE method requires several important topics to be fully understood, and this work presents studies addressing this aim. The first topic concerns the determination of effective media parameters, namely, scattering induced attenuation and phase velocity, from measured coherent waves. This work evaluates two determination approaches, through-transmission and fitting, and it is found that these approaches are practically equivalent and can thus be used interchangeably. For the second topic of estimating modelling errors and uncertainties, this work performs thorough analytical and numerical studies to estimate those caused by both FE approximations and statistical considerations. It is demonstrated that the errors and uncertainties can be well suppressed by using a proper combination of modelling parameters. For the last topic of incorporating FE model information into theoretical models, this work presents elaborated investigations and shows that to improve agreement between the FE and theoretical models, the symmetry boundary conditions used in FE models need to be considered in the two-point correlation function, which is required by theoretical models.

Journal article

Corcoran J, Leinov E, Jeketo A, Lowe MJSet al., 2020, A guided wave inspection technique for wedge features, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol: 67, Pages: 997-1008, ISSN: 0885-3010

Numerous engineering components feature prismatic wedge-like structures that require Non-destructive Evaluation (NDE) in order to ensure functionality or safety. This paper focuses on the inspection of the wedge-like seal fins of a jet engine drum, though the capabilities presented will be generic. It is proposed that anti-symmetric flexural edge modes, feature guided waves localised to the wedge tips, may be used for defect detection. Although analytical solutions exist that characterise the ultrasonic behaviour of ideal wedges, in practise real wedges will be irregular (containing for example truncated tips, are built onto an associated structure or have non straight edges) and therefore generic methodologies are required to characterise wave behaviour in non-ideal wedges. This paper uses a semi-analytical finite element (SAFE) methodology to characterise guided waves in wedge-like features with irregular cross-sections to assess their suitability for NDE inspection and compare them to edge modes in ideal wedges. The science and methodologies required in this paper are necessary to select an appropriate operating frequency for the particular application at hand. Additionally, this paper addresses the practical challenge of excitation and detection of flexural edge modes by presenting a piezoelectric based dry-coupled transducer system suitable for pulse-echo operation. The paper therefore presents the scientific basis required for industrial exploitation, together with the practical tools that facilitate use. The study concludes with the experimental demonstration of the edge wave based inspection of a seal fin, achieving a signal-to-noise ratio of 28 dB from a 0.75 mm radial tip defect.

Journal article

Sha G, Huang M, Lowe MJS, Rokhlin SIet al., 2020, Attenuation and velocity of elastic waves in polycrystals with generally anisotropic grains: Analytic and numerical modeling., Journal of the Acoustical Society of America, Vol: 147, Pages: 2442-2465, ISSN: 0001-4966

Better understanding of elastic wave propagation in polycrystals has interest for applications in seismology and nondestructive material characterization. In this study, a second-order wave propagation (SOA) model that considers forward multiple scattering events is developed for macroscopically isotropic polycrystals with equiaxed grains of arbitrary anisotropy (triclinic). It predicts scattering-induced wave attenuation and dispersion of phase velocity. The SOA model implements the generalized two-point correlation (TPC) function, which relates to the actual numeric TPC of simulated microstructure. The analytical Rayleigh and stochastic asymptotes for both attenuation and phase velocity are derived for triclinic symmetry grains, which elucidate the effects of the elastic scattering factors and the generalized TPC in different frequency regimes. Also, the computationally efficient far field approximation attenuation model is obtained for this case; it shows good agreement with the SOA model in all frequency ranges. To assess the analytical models, a three-dimensional (3D) finite element (FE) model for triclinic polycrystals is developed and implemented on simulated 3D triclinic polycrystalline aggregates. Quantitative agreement is observed between the analytical and the FE simulations for both the attenuation and phase velocity. Also, the quasi-static velocities obtained from the SOA and FE models are in excellent agreement with the static self-consistent velocity.

Journal article

Haslinger SG, Lowe MJS, Huthwaite P, Craster RV, Shi Fet al., 2020, Elastic shear wave scattering by randomly rough surfaces, Journal of the Mechanics and Physics of Solids, Vol: 137, Pages: 1-20, ISSN: 0022-5096

Characterizing cracks within elastic media forms an important aspect of ultrasonic non-destructive evaluation (NDE) where techniques such as time-of-flight diffraction and pulse-echo are often used with the presumption of scattering from smooth, straight cracks. However, cracks are rarely straight, or smooth, and recent attention has focussed upon rough surface scattering primarily by longitudinal wave excitations.We provide a comprehensive study of scattering by incident shear waves, thus far neglected in models of rough surface scattering despite their practical importance in the detection of surface-breaking defects, using modelling, simulation and supporting experiments. The scattering of incident shear waves introduces challenges, largely absent in the longitudinal case, related to surface wave mode-conversion, the reduced range of validity of the Kirchhoff approximation (KA) as compared with longitudinal incidence, and an increased importance of correlation length.The expected reflection from a rough defect is predicted using a statistical model from which, given the angle of incidence and two statistical parameters, the expected reflection amplitude is obtained instantaneously for any scattering angle and length of defect. If the ratio of correlation length to defect length exceeds a critical value, which we determine, there is an explicit dependence of the scattering results on correlation length, and we modify the modelling to find this dependence. The modelling is cross-correlated against Monte Carlo simulations of many different surface profiles, sharing the same statistical parameter values, using numerical simulation via ray models (KA) and finite element (FE) methods accelerated with a GPU implementation. Additionally we provide experimental validations that demonstrate the accuracy of our predictions.

Journal article

Haslinger SG, Lowe MJS, Huthwaite P, Craster R, Shi Fet al., 2019, Appraising Kirchhoff approximation theory for the scattering of elastic shear waves by randomly rough defects, Journal of Sound and Vibration, Vol: 460, Pages: 1-16, ISSN: 0022-460X

Rapid and accurate methods, based on the Kirchhoff approximation (KA), are developed to evaluate the scattering of shear waves by rough defects and quantify the accuracy of this approximation. Defect roughness has a strong effect on the reflection of ultrasound, and every rough defect has a different surface, so standard methods of assessing the sensitivity of inspection based on smooth defects are necessarily limited. Accurately resolving rough cracks in non-destructive evaluation (NDE) inspections often requires shear waves since they have higher sensitivity to surface roughness than longitudinal waves. KA models are attractive, since they are rapid to deploy, however they are an approximation and it is important to determine the range of validity for the scattering of ultrasonic shear waves; this range is found here. Good agreement between KA and high fidelity finite element simulations is obtained for a range of incident/scattering angles, and the limits of validity for KA are found to be much stricter than for longitudinal wave incidence; as the correlation length of rough surfaces is reduced to the order of the incident shear wavelength, a combination of multiple scattering and surface wave mode conversion leads to KA predictions diverging from those of the true diffuse scattered fields.

Journal article

Elliott JB, Lowe MJS, Huthwaite P, Phillips R, Duxbury DJet al., 2019, Sizing subwavelength defects with ultrasonic imagery: an assessment of super-resolution imaging on simulated rough defects, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 66, Pages: 1634-1648, ISSN: 0885-3010

There is a constant drive within the nuclear power industry to improve upon the characterization capabilities of current ultrasonic inspection techniques in order to improve safety and reduce costs. Particular emphasis has been placed on the ability to characterize very small defects which could result in extended component lifespan and help reduce the frequency of in-service inspections. Super-resolution (SR) algorithms, also known as sampling methods, have been shown to demonstrate the capability to resolve scatterers separated by less than the diffraction limit when deployed in representative inspections and therefore could be used to tackle this issue. In this paper, the factorization method (FM) and the Time Reversal Multiple-Signal-Classification (TR-MUSIC) algorithms are applied to the simulated ultrasonic array inspection of small rough embedded planar defects to establish their characterization capabilities. Their performance was compared to the conventional total focusing method (TFM). A full 2-D finite-element (FE) Monte Carlo modeling study was conducted for defects with a range of sizes, orientations, and magnitude of surface roughness. The results presented show that for subwavelength defects, both the FM and TR-MUSIC algorithms were able to size and estimate defect orientation accurately for smooth cases and, for rough defects, up to a roughness of 100 μm. This level of roughness is representative of the thermal fatigue defects encountered in the nuclear power sector. This contrasted with the relatively poor performance of TFM in these cases which consistently oversized these defects and could not be used to estimate the defect orientation, making through-wall sizing with this method impossible.

Journal article

Egerton JS, Lowe MJS, Huthwaite P, 2019, Automated and antidispersive coherent and incoherent noise reduction of waveforms that contain a reference pulse, NDT & E INTERNATIONAL, Vol: 105, Pages: 35-45, ISSN: 0963-8695

Journal article

Shipway NJ, Huthwaite P, Lowe MJS, Barden TJet al., 2019, Performance based modifications of random forest to perform automated defect detection for fluorescent penetrant inspection, Journal of Nondestructive Evaluation, Vol: 38, ISSN: 0195-9298

The established Machine Learning algorithm Random Forest (RF) has previously been shown to be effective at performing automated defect detection for test pieces which have been processed using fluorescent penetrant inspection (FPI). The work presented here investigates three methods (two previously proposed in other fields, one novel method) of modifying the FPI RF based on the individual performance of decision trees within the RF. Evaluating based on the 2 Score, which is the harmonic mean of precision and recall which places a larger weighting on recall, it is possible to reduce the RF in size by up to 50%, improving speed and memory requirements, whilst still gain equivalent results to a full RF. Introducing a performance based weighting or retraining decision trees which fall below a certain performance level however, offers no improvement on results for the increased computation time required to implement.

Journal article

Shipway N, Barden T, Huthwaite P, Lowe Met al., 2019, Automated defect detection for Fluorescent Penetrant Inspection using Random Forest, NDT and E International, Vol: 101, Pages: 113-123, ISSN: 0963-8695

Fluorescent Penetrant Inspection (FPI) is the most widely used NDT method in the aerospace industry. Inspection of FPI is currently done visually and difficulties arise distinguishing between penetrant associated with defects and that due to insufficient wash-off or geometrical indications. This, in addition to the nature of the inspection process, means inspection is largely influenced by human factors. The ability to perform automated inspection would provide increased consistency, reliability and productivity.The Random Forest algorithm was used to detect defects in a number of flat titanium plates which had been processed with FPI and photographed to produce digital images. This method has demonstrated the ability to correctly distinguish between defects and other non-relevant indications with accuracy comparable to a human inspector with a very small number of training examples. These results show the potential for the Random Forest algorithm to be used to detect defects in aerospace components, allowing the entire FPI line to become autonomous.

Journal article

Lan B, Carpenter MA, Gan W, Hofmann M, Dunne FPE, Lowe MJSet al., 2018, Rapid measurement of volumetric texture using resonant ultrasound spectroscopy, Scripta Materialia, Vol: 157, ISSN: 1359-6462

This paper presents a non-destructive evaluation method of volumetric texture using resonant ultrasound spectroscopy (RUS). It is based on a general theoretical platform that links the directional wave speeds of a polycrystalline aggregate to its texture through a simple convolution relationship, and RUS is employed to obtain the speeds by measuring the elastic constants, where well-established experimental and post-processing procedures are followed. Important lower-truncation-order textures of representative hexagonal and cubic metal samples with orthorhombic sample symmetries are extracted, and are validated against independent immersion ultrasound and neutron tests. The successful deployment of RUS indicates broader applications of the general methodology.

Journal article

Lan B, Britton TB, Jun T-S, Gan W, Hofmann M, Dunne F, Lowe Met al., 2018, Direct volumetric measurement of crystallographic texture using acoustic waves, Acta Materialia, Vol: 159, Pages: 384-394, ISSN: 1359-6454

Crystallographic texture in polycrystalline materials is often developed as preferred orientation distribution of grains during thermo-mechanical processes. Texture dominates many macroscopic physical properties and reflects the histories of structural evolution, hence its measurement and control are vital for performance optimisation and deformation history interogation in engineering and geological materials. However, exploitations of texture are hampered by state-of-the-art characterisation techniques, none of which can routinely deliver the desirable non-destructive, volumetric measurements, especially at larger lengthscales. Here we report a direct and general methodology retrieving important lower-truncation-order texture and phase information from acoustic (compressional elastic) wave speed measurements in different directions through the material volume (avoiding the need for forward modelling). We demonstrate its deployment with ultrasound in the laboratory, where the results from seven representative samples are successfully validated against measurements performed using neutron diffraction. The acoustic method we have developed includes both fundamental wave propagation and texture inversion theories which are free from diffraction limits, they are arbitrarily scalable in dimension, and can be rapidly deployed to measure the texture of large objects. This opens up volumetric texture characterisation capabilities in the areas of material science and beyond, for both scientific and industrial applications.

Journal article

Eckel SF, Huthwaite P, Lowe M, Schumm A, Guérin Pet al., 2018, Establishment and validation of the channelized hotelling model observer for image assessment in industrial radiography, NDT and E International, Vol: 98, Pages: 1-7, ISSN: 0963-8695

A new method for industrial radiography is presented to assess image quality objectively. The assessment is performed by a modelled observer developed to interpret radiographic images in order to rate the detectability of structural defects. For the purpose of qualifying radiographic NDE procedures, computational tools simulate the image, but should additionally automatically assess the associated image quality instead of relying on human interpretation. The Channelized Hotelling Model Observer (CHO) approach, originally developed for medical imaging, is here developed for industrial NDE applications to measure objectively the defect's detectability. A validation study based on a comparison of the model's efficiency of observing circular and elongated flaws shows that the CHO outperforms other detectability models used by industry. Furthermore, the model's reliability was verified by comparing it to psychophysical data.

Journal article

Choi W, Shi F, Lowe MJS, Skelton EA, Craster RV, Daniels WLet al., 2018, Rough surface reconstruction of real surfaces for numerical simulations of ultrasonic wave scattering, NDT and E International, Vol: 98, Pages: 27-36, ISSN: 0963-8695

The scattering of waves by rough surfaces plays a significant role in many fields of physical sciences including ultrasonics where failure surfaces are often rough and their accurate identification is critical. The prediction of the strength of scattering can be hampered when the roughness is not adequately characterised and this is a particular issue when the surface roughness is within an order of the incident wavelength. Here we develop a methodology to reconstruct, and accurately represent, rough surfaces using an AutoRegressive (AR) process that then allows for rapid numerical simulations of ultrasonic wave rough surface scattering in three dimensions. Gaussian, exponential and AR surfaces are reconstructed based on real surface data and the statistics of the surfaces are compared with each other. The statistics from the AR surfaces agree well with those from actual rough surfaces, taken from experimental samples, in terms of the heights as well as the gradients, which are the two main factors in accurately predicting the wave scattering intensities. Ultrasonic rough surface scattering is simulated numerically using the Kirchhoff approximation, and comparisons with Gaussian, exponential, AR and real sample surfaces are performed; scattering intensities found using AR surfaces show the best agreement with the real sample surfaces.

Journal article

Zhang C, Huthwaite P, Lowe M, 2018, Eliminating backwall effects in the phased array imaging of near backwall defects, Journal of the Acoustical Society of America, Vol: 144, Pages: 1075-1088, ISSN: 0001-4966

Ultrasonic array imaging is widely used to provide high quality defect detection and characterization. However, the current imaging techniques are poor at detecting and characterizing defects near a surface facing the array, as the signal scattered from the defect and the strong reflection from the planar backwall will overlap in both time and frequency domains, masking the presence of the defect. To address this problem, this paper explores imaging algorithms and relevant methods to eliminate the strong artefacts caused by the backwall reflection. The half-skip total focusing method (HSTFM), the factorization method (FM) and the time domain sampling method (TDSM) are chosen as the imaging algorithms used in this paper. Then, three methods, referred to as full matrix capture (FMC) subtraction, weighting function filtering, and the truncation method, are developed to eliminate or filter the effects caused by the strong backwall reflection. These methods can be applied easily with few tuning parameters or little prior knowledge. The performances of the proposed imaging techniques are validated in both simulation and experiments, and the results show the effectiveness of the developed methods to eliminate the artefacts caused by the backwall reflections when imaging near backwall defects.

Journal article

Phillips R, Duxbury D, Huthwaite P, Lowe Met al., 2018, Simulating the ultrasonic scattering from complex surface-breaking defects with a three-dimensional hybrid model, NDT and E International, Vol: 97, Pages: 32-41, ISSN: 0963-8695

© 2018 Elsevier Ltd Modelling is increasingly relied on for the design and qualification of ultrasonic inspections applied to safety-critical components. Numerical methods enable the simulation of the ultrasonic interaction with realistic defect morphologies; however, the computational requirements often limit their deployment. The hybrid simulation technique, which combines semi-analytical and numerical methods, realises the potential of high fidelity numerical modelling without the limiting computational factors. The inspection of thick section components for near-backwall surface-breaking defects results in large propagation distances, making them a key application of hybrid modelling. This work presents a methodology for efficiently simulating the ultrasonic inspection of complex surface-breaking defects using a hybrid model. The model is initially verified against full numerical simulation; further validation is presented by comparison to an experimental scan over an artificially machined surface-breaking notch. The potential of the new hybrid method is then demonstrated by carrying out a Monte Carlo analysis on the scattered field from surface-breaking defects with randomly rough surfaces and the results are compared to the Kirchhoff approximation.

Journal article

Van Pamel A, Sha G, Lowe MJS, Rokhlin Set al., 2018, Numerical and analytic modelling of elastodynamic scattering within polycrystalline materials, Jornal of the Acoustical Society of America, Vol: 143, Pages: 2394-2408, ISSN: 0001-4966

The elastodynamic behavior of polycrystalline cubic materials is studied through the fundamental propagation properties, the attenuation and wave speed, of a longitudinal wave. Predictions made by different analytical models are compared to both numerical and experimental results. The numerical model is based on a three-dimensional Finite Element (FE) simulation which provides a full-physics solution to the scattering problem. The three main analytical models include the Far-Field Approximation (FFA), the Self-Consistent Approximation (SCA) to the reference medium, and the herein derived Second Order Approximation (SOA). The classic Stanke and Kino model is also included, which by comparison to the SOA, reveals the importance of the distribution of length-scales described in terms of the two-point correlation function in determining scattering behavior. Further comparison with the FE model demonstrates that the FFA provides a simple but satisfactory approximation, whereas the SOA shows all-around excellent agreement. The experimental wave velocity data evaluated against the SOA and SC reveal a better agreement when the Voigt reference is used in second order models. The use of full-physics numerical simulations has enabled the study of wave behavior in these random media which will be important to inform the ongoing development of analytical models and the understanding of observations.

Journal article

Shi F, Lowe M, Skelton EA, Craster RVet al., 2018, A time-domain finite element boundary integral approach for elastic wave scattering, Computational Mechanics, Vol: 61, Pages: 471-483, ISSN: 0178-7675

The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

Journal article

Zhang C, Huthwaite P, Lowe M, 2018, The application of the Factorization Method to the subsurface imaging of surfacebreaking cracks, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol: 65, Pages: 497-512, ISSN: 0885-3010

A common location for cracks to appear is at the surface of a component; at the near surface, many nondestructive evaluation techniques are available to inspect for these, but at the far surface this is much more challenging. Ultrasonic imaging is proposed to enable far surface defect detection, location, and characterization. One specific challenge here is the presence of a strong reflection from the backwall, which can often mask the relatively small response from a defect. In this paper, the factorization method (FM) is explored for the application of subsurface imaging of the surface-breaking cracks. In this application, the component has two parallel surfaces, the crack is initiated from the far side and the phased array is attached on the near side. Ideally, the pure scattered field from a defect is needed for the correct estimation of the scatterer through the FM algorithm. However, the presence of the backwall will introduce a strong specular reflection into the measured data which should be removed before applying the FM algorithm. A novel subtraction method was developed to remove the backwall reflection. The performance of the FM algorithm and this subtraction method were tested with the simulated and experimental data. The experimental results showed a good consistency with the simulated results. It is shown that the FM algorithm can generate high-quality images to provide a good detection of the crack and an accurate sizing of the crack length. The subtraction method was able to provide a good backwall reflection removal in the case of small cracks (1-3 wavelengths).

Journal article

Egerton JS, Lowe MJS, Huthwaite P, Halai HVet al., 2017, A multiband approach for accurate numerical simulation of frequency dependent ultrasonic wave propagation in the time domain, JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, Vol: 142, Pages: 1270-1280, ISSN: 0001-4966

Finite element (FE) simulations are popular for studying propagation and scattering of ultrasonic waves in nondestructive evaluation. For a large number of degrees of freedom, time domain FE simulations are much more efficient than the equivalent frequency domain solution. However, unlike frequency domain simulations, time domain simulations are often poor at representing the speed and the attenuation of waves if the material is strongly damping or highly dispersive. Here, the authors demonstrate efficient and accurate representation of propagated and scattered waves, achieved by combining a set of time domain solutions that are obtained for a set of frequency ranges known as bands, such that, in combination, the authors' multiband solution accurately represents the whole wave spectrum. Consequently, high accuracy is achieved, at minor computational cost, using a modest number of bands. The multiband technique is implemented for ultrasonic wave propagation in highly attenuating polyethylene material, using three frequency bands, and can yield a reduction in empirical acoustic properties fractional error compared with respective time domain simulations, in propagation duration, of a factor of 1.4, and in full-width-half-maximum, of a factor of 10. Last, the accuracy of this approach is further exemplified in a wave scattering simulation.

Journal article

Shi F, Lowe M, Craster R, 2017, Diffusely scattered and transmitted elastic waves by random rough solid-solid interfaces using an elastodynamic Kirchhoff approximation, PHYSICAL REVIEW B, Vol: 95, ISSN: 2469-9950

Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ≤λ/3, correlation length λ0≥ wavelength λ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.

Journal article

Egerton JS, Lowe MJS, Huthwaite P, Halai HVet al., 2017, Ultrasonic attenuation and phase velocity of high-density polyethylene pipe material, JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, Vol: 141, Pages: 1535-1545, ISSN: 0001-4966

Knowledge of acoustic properties is crucial for ultrasonic or sonic imaging and signal detection in nondestructive evaluation (NDE), medical imaging, and seismology. Accurately and reliably obtaining these is particularly challenging for the NDE of high-density polyethylene (HDPE), such as is used in many water or gas pipes, because the properties vary greatly with frequency, temperature, direction and spatial location. Therefore the work reported here was undertaken in order to establish a basis for such a multiparameter description. The approach is general but the study specifically addresses HDPE and includes measured data values. Applicable to any such multiparameter acoustic properties dataset is a devised regression method that uses a neural network algorithm. This algorithm includes constraints to respect the Kramers-Kronig causality relationship between speed and attenuation of waves in a viscoelastic medium. These constrained acoustic properties are fully described in a multidimensional parameter space to vary with frequency, depth, temperature, and direction. The resulting uncertainties in acoustic properties dependence on the above variables are better than 4% and 2%, respectively, for attenuation and phase velocity and therefore can prevent major defect imaging errors.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00153511&limit=30&person=true