Imperial College London

ProfessorMaryRyan

Faculty of EngineeringDepartment of Materials

Vice-Dean (Research), Faculty of Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6755m.p.ryan

 
 
//

Location

 

B338Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

217 results found

Roqan IS, Venkatesh S, Zhang Z, Hussain S, Bantounas I, Franklin JB, Flemban TH, Zou B, Lee J-S, Schwingenschlogl U, Petrov PK, Ryan MP, Alford NMet al., 2015, Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes, Journal of Applied Physics, Vol: 117, ISSN: 1089-7550

We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline Gdx Zn 1−xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.

Journal article

Marchetti M, Shaffer MSP, Zambianchi M, Chen S, Superti F, Schwander S, Gow A, Zhang JJ, Chung KF, Ryan MP, Porter AE, Tetley TDet al., 2015, Adsorption of surfactant protein D from human respiratory secretions by carbon nanotubes and polystyrene nanoparticles depends on nanomaterial surface modification and size, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 370, ISSN: 0962-8436

Journal article

Wang T, Costan J, Centeno A, Pang J, Price D, Ryan M, Xie Fet al., 2015, Broadband enhanced fluorescence using Zinc-Oxide nanoflower arrays, Journal of Materials Chemistry C, Vol: 3, Pages: 2656-2663, ISSN: 2050-7534

ZnO nanostructures were fabricated into flower-like nanoscale arrays by the hydrothermal growth of ZnO nanowires onto a self-assembled monolayer of polystyrene spheres on a glass substrate. Fluorescent molecules conjugated with streptavidin were incubated on glass with 3-(glycidoxypropyl) trimethoxysilane (GPTS) modified and biotinylated bovine serum albumin (bBSA) attached (GPTS–bBSA), aligned ZnO nanorod arrays and ZnO nanoflower arrays, respectively. An enhancement factor of up to 45 was obtained from ZnO nanoflower arrays, compared to less than 10 for the aligned nanorods. More importantly, using the same substrate, we observed a broadband fluorescence enhancement. The level of enhancement obtained from the nanoflower arrays is comparable with that from Metal Enhanced Fluorescence. The broadband nature of this process makes it an attractive alternative for fluorescent based device development.

Journal article

Chen S, Goode AE, Skepper JN, Thorley AJ, Seiffert JM, Chung KF, Tetley TD, Shaffer MSP, Ryan MP, Porter AEet al., 2015, Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments, Journal of Microscopy, Vol: 261, Pages: 157-166, ISSN: 1365-2818

Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinized. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data. Lay description: With increasing commercialization of silver nanomaterials (AgNMs) comes a concomitant need to understand occupational health, public safety and environmental implications of these materials. Nanoscale studies of the complex bio-nano interface lie at the heart of technical challenges. Despite numerous reports, there is no consensus regarding biological mechanisms enacted by AgNMs. Powerful new electron microscopy techniques can be used to visualize the interaction of the AgNMs with tissues. However, it is extremely difficult to

Journal article

Venkatesh S, Franklin JB, Ryan MP, Lee J-S, Ohldag H, McLachlan MA, Alford NM, Roqan ISet al., 2015, Defect-band mediated ferromagnetism in Gd-doped ZnO thin films, JOURNAL OF APPLIED PHYSICS, Vol: 117, ISSN: 0021-8979

Journal article

Metze AL, Pishbin F, Ryan MP, Seuss S, Diba M, Shaffer MSP, Boccaccini ARet al., 2015, Electrophoretic co-deposition of chitosan and graphene oxide results in antibacterial coatings for medical applications, Pages: 176-182, ISSN: 1013-9826

© (2015) Trans Tech Publications, Switzerland. Chitosan - graphene oxide (GO) composite coatings intended for antibacterial applications were obtained by cathodic electrophoretic deposition (EPD) on stainless steel. The coatings were characterized using SEM, FTIR, contact angle and roughness measurements and by antibacterial studies against E.coli. The coating was observed to consist of a polymer matrix with embedded, agglomerated graphene oxide sheets. A decrease in bacteria cell viability of at least 50 % was measured on the chitosan - GO surface in comparison to uncoated stainless steel.

Conference paper

Theodorou IG, Ryan MP, Tetley TD, Porter AEet al., 2014, Inhalation of silver nanomaterials - seeing the risks, International Journal of Molecular Sciences, Vol: 15, Pages: 23936-23974, ISSN: 1661-6596

Demand for silver engineered nanomaterials (ENMs) is increasing rapidly in optoelectronic and in health and medical applications due to their antibacterial, thermal, electrical conductive, and other properties. The continued commercial up-scaling of ENM production and application needs to be accompanied by an understanding of the occupational health, public safety and environmental implications of these materials. There have been numerous in vitro studies and some in vivo studies of ENM toxicity but their results are frequently inconclusive. Some of the variability between studies has arisen due to a lack of consistency between experimental models, since small differences between test materials can markedly alter their behaviour. In addition, the propensity for the physicochemistry of silver ENMs to alter, sometimes quite radically, depending on the environment they encounter, can profoundly alter their bioreactivity. Consequently, it is important to accurately characterise the materials before use, at the point of exposure and at the nanomaterial-tissue, or “nanobio”, interface, to be able to appreciate their environmental impact. This paper reviews current literature on the pulmonary effects of silver nanomaterials. We focus our review on describing whether, and by which mechanisms, the chemistry and structure of these materials can be linked to their bioreactivity in the respiratory system. In particular, the mechanisms by which the physicochemical properties (e.g., aggregation state, morphology and chemistry) of silver nanomaterials change in various biological milieu (i.e., relevant proteins, lipids and other molecules, and biofluids, such as lung surfactant) and affect subsequent interactions with and within cells will be discussed, in the context not only of what is measured but also of what can be visualized.

Journal article

Goode AE, Porter AE, Ryan MP, McComb DWet al., 2014, Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution, Nanoscale, Vol: 7, Pages: 1534-1548, ISSN: 2040-3372

Two powerful and complementary techniques for chemical characterisation of nanoscale systems are electron energy-loss spectroscopy in the scanning transmission electron microscope, and X-ray absorption spectroscopy in the scanning transmission X-ray microscope. A correlative approach to spectro-microscopy may not only bridge the gaps in spatial and spectral resolution which exist between the two instruments, but also offer unique opportunities for nanoscale characterisation. This review will discuss the similarities of the two spectroscopy techniques and the state of the art for each microscope. Case studies have been selected to illustrate the benefits and limitations of correlative electron and X-ray microscopy techniques. In situ techniques and radiation damage are also discussed.

Journal article

Hu S, Chen S, Menzel R, Goode AD, Ryan MP, Porter AE, Shaffer MSPet al., 2014, Aqueous dispersions of oligomer-grafted carbon nanomaterials with controlled surface charge and minimal framework damage, FARADAY DISCUSSIONS, Vol: 173, Pages: 273-285, ISSN: 1359-6640

Journal article

Illy BN, Ingham B, Toney MF, Nandhakumar I, Ryan MPet al., 2014, Understanding the Selective Etching of Electrodeposited ZnO Nanorods, LANGMUIR, Vol: 30, Pages: 14079-14085, ISSN: 0743-7463

Journal article

Ramadan AJ, Rochford LA, Keeble DS, Sullivan P, Ryan MP, Jones TS, Heutz Set al., 2014, Exploring High Temperature Templating in Non-planar Phthalocyanine / Copper Iodide (111) Bilayers, Journal of Materials Chemistry C, ISSN: 2050-7526

Elevated substrate temperature growth of phthalocyanine thin films is known to influence film morphology and increase crystallinity. Structural templating offers another method through which the structure of phthalocyanine films can be controlled. Here we combine the use of copper iodide (CuI) and elevated substrate temperatures and investigate their effect on the growth of a non-planar phthalocyanine system. Employing x-ray diffraction and atomic force microscopy we present detailed surface and crystal structure information. Vanadyl phthalocyanine (VOPc) is shown to adopt an edge-on orientation on CuI at ambient substrate temperatures, a behavior in stark contrast to that of previously studied planar phthalocyanine molecules. Elevated substrate temperature is shown to result in changes in the surface morphology and structure demonstrating the versatility of the system. The crystal structure of VOPc was redetermined and used to infer the molecular orientation of the various VOPc/CuI bilayer structures.

Journal article

Mukherjee D, Royce SG, Sarkar S, Thorley A, Schwander S, Ryan MP, Porter AE, Chung KF, Tetley TD, Zhang J, Georgopoulos PGet al., 2014, Modeling in vitro cellular responses to silver nanoparticles, Journal of Toxicology, Vol: 2014, ISSN: 1687-8205

Engineered nanoparticles (NPs) have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a "stepping stone" for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions.

Journal article

Teo GY, Ryan MP, Riley DJ, 2014, A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor, ELECTROCHEMISTRY COMMUNICATIONS, Vol: 47, Pages: 13-16, ISSN: 1388-2481

Journal article

van Veelen A, Preedy O, Qi J, Law GTW, Morris K, Mosselmans JFW, Ryan MP, Evans NDM, Wogelius RAet al., 2014, Uranium and technetium interactions with wustite [Fe1-xO] and portlandite [Ca(OH)(2)] surfaces under geological disposal facility conditions, MINERALOGICAL MAGAZINE, Vol: 78, Pages: 1097-1113, ISSN: 0026-461X

Journal article

Mukherjee D, Leo BF, Royce SG, Porter AE, Ryan MP, Schwander S, Chung KF, Tetley TD, Zhang J, Georgopoulos PGet al., 2014, Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver, JOURNAL OF NANOPARTICLE RESEARCH, Vol: 16, ISSN: 1388-0764

Journal article

Baer DR, Munusamy P, Smith JN, Karakoti AS, Kuchibhatla SVNT, Liu C, Wang C, Chen S, Porter AE, Ryan MPet al., 2014, Time dependent transformations of ceria and silver nanoparticles during synthesis, storage, and in biological media, 248th National Meeting of the American-Chemical-Society (ACS), Publisher: AMER CHEMICAL SOC, ISSN: 0065-7727

Conference paper

Dunlop IE, Ryan MP, Goode AE, Schuster C, Terrill NJ, Weaver JVMet al., 2014, Direct synthesis of PEG-encapsulated gold nanoparticles using branched copolymer nanoreactors, RSC Advances, Vol: 4, Pages: 27702-27707

Journal article

Pishbin F, Mourino V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini ARet al., 2014, Electrophoretic Deposition of Gentamicin-Loaded Bioactive Glass/Chitosan Composite Coatings for Orthopaedic Implants, ACS APPLIED MATERIALS & INTERFACES, Vol: 6, Pages: 8796-8806, ISSN: 1944-8244

Journal article

Chen S, Hu S, Smith EF, Ruenraroengsak P, Thorley AJ, Menzel R, Goode AE, Ryan MP, Tetley TD, Porter AE, Shaffer MSPet al., 2014, Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application, Biomaterials, Vol: 35, Pages: 4729-4738

Journal article

Sarkar S, Zhang L, Subramaniam P, Lee K-B, Garfunkel E, Strickland PAO, Mainelis G, Lioy PJ, Tetley TD, Chung KF, Zhang J, Ryan M, Porter A, Schwander Set al., 2014, Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust Particles in Human Immune Cells, PLOS One, Vol: 9, ISSN: 1932-6203

Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO2) nanoparticles have been used inEurope as diesel fuel additives (EnviroxTM). We attempted to examine the effects of particles emitted from a diesel engineburning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO2 (DEP-Env) on innateimmune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Envwere obtained on three separate occasions using identical collection and extraction protocols with the aim of determiningthe reproducibility of particles generated at different times. However, we observed significant differences in size and surfacecharge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells andPBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differencesin bioreactivity as determined by IL-1b, TNF-a, IL-6, IFN-c, and IL-12p40 mRNA (by qRT-PCR) and protein expression (byELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (237to 241 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of thebioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expectedbioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batchto-batchvariations in physical (and possibly chemical) properties.

Journal article

Goode AE, Hine NDM, Chen S, Bergin SD, Shaffer MSP, Ryan MP, Haynes PD, Porter AE, McComb DWet al., Mapping functional groups on oxidised multi-walled carbon nanotubes at the nanometre scale, Chemical Communications, ISSN: 1364-548X

Journal article

Diba M, Garcia-Gallastegui A, Taylor RNK, Pishbin F, Ryan MP, Shaffer MSP, Boccaccini ARet al., 2014, Quantitative evaluation of electrophoretic deposition kinetics of graphene oxide, CARBON, Vol: 67, Pages: 656-661, ISSN: 0008-6223

Journal article

Goode AE, Hine NDM, Chen S, Bergin SD, Motskin M, Gonzalez Carter DA, Dexter DT, Shaffer MSP, Ryan MP, Haynes PD, Porter AE, McComb DWet al., 2014, Electron microscopic characterization of functionalized multi-walled carbon nanotubes and their interactions with the blood brain barrier, Pages: 1744-1745, ISSN: 1431-9276

Conference paper

Simoes TA, Goode AE, Porter AE, Ryan MP, Milne SJ, Brown AP, Brydson RMDet al., 2014, Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling, Conference of the Electron-Microscopy-and-Analysis-Group (EMAG), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Goode AE, Hine NDM, Chen S, Bergin SD, Shaffer MSP, Ryan MP, Haynes PD, Porter AE, McComb DWet al., 2014, Mapping functional groups on oxidised multiwalled carbon nanotubes at the nanometre scale, CHEMICAL COMMUNICATIONS, Vol: 50, Pages: 6744-6747, ISSN: 1359-7345

Journal article

Burriel M, Wilkins S, Hill JP, Muñoz-Márquez MA, Brongersma HH, Kilner JA, Ryan MP, Skinner SJet al., 2014, Absence of Ni on the outer surface of Sr doped La2NiO4 single crystals, Energy Environ. Sci.

Journal article

Fajardo S, Bastidas DM, Ryan MP, Criado M, McPhail DS, Morris RJH, Bastidas JMet al., 2014, Low energy SIMS characterization of passive oxide films formed on a low-nickel stainless steel in alkaline media., APPLIED SURFACE SCIENCE, Vol: 288, Pages: 423-429, ISSN: 0169-4332

Journal article

Chen S, Theodorou IG, Goode AE, Gow A, Schwander S, Zhang JJ, Chung KF, Tetley TD, Shaffer MS, Ryan MP, Porter AEet al., 2013, High-Resolution Analytical Electron Microscopy Reveals Cell Culture Media-Induced Changes to the Chemistry of Silver Nanowires, ENVIRONMENTAL SCIENCE & TECHNOLOGY, Vol: 47, Pages: 13813-13821, ISSN: 0013-936X

Journal article

Woolley RJ, Ryan MP, Skinner SJ, 2013, In Situ Measurements on Solid Oxide Fuel Cell Cathodes - Simultaneous X-Ray Absorption and AC Impedance Spectroscopy on Symmetrical Cells, FUEL CELLS, Vol: 13, Pages: 1080-1087, ISSN: 1615-6846

Journal article

Zhang J, Nazarenko Y, Zhang L, Calderon L, Lee K-B, Garfunkel E, Schwander S, Tetley TD, Chung KF, Porter AE, Ryan M, Kipen H, Lioy PJ, Mainelis Get al., 2013, Impacts of a Nanosized Ceria Additive on Diesel Engine Emissions of Particulate and Gaseous Pollutants, ENVIRONMENTAL SCIENCE & TECHNOLOGY, Vol: 47, Pages: 13077-13085, ISSN: 0013-936X

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00170150&limit=30&person=true&page=3&respub-action=search.html