Imperial College London

ProfessorMaryRyan

Central FacultyOffice of the Provost

Vice-Provost (Research and Enterprise)
 
 
 
//

Contact

 

+44 (0)20 7594 6755m.p.ryan

 
 
//

Location

 

B338Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

256 results found

Wang S, Burdett P, Lovell E, Bettles R, Wilson N, Ryan M, Giuliani Fet al., 2023, Fracture properties of La(Fe,Mn,Si)13 magnetocaloric materials, Materials Letters, Vol: 338, Pages: 1-4, ISSN: 0167-577X

La(Fe,Mn,Si)13 alloys are a promising material family for magnetic refrigeration. Challenges associated with their structural integrity during device assembly and operation requires deep understanding of the mechanical properties. Here we developed a workflow to quantitatively study the fracture properties of La(Fe,Mn,Si)13 plates used in magnetic cooling devices. We employed microstructural characterisation, optical examination of defects, and four-point bending tests of samples with known defect sizes to evaluate their mechanical performance. We established the residual strength curve which directly links observed defects to mechanical strength. The estimated fracture toughness KC of hydrogenated La(Fe,Mn,Si)13 is approximately 4 MPa·m1/2 for the geometry employed. The established relationship between strength and crack length enables the prediction of mechanical performance through examination of defects via optical microscopy, therefore can be used industrially for directing plate selection to guarantee the mechanical stability of refrigeration devices.

Journal article

Tan Z, Berry A, Charalambides M, Mijic A, Pearse W, Porter A, Ryan M, Shorten R, Stettler M, Tetley T, Wright S, Masen Met al., 2023, Tyre wear particles are toxic for us and the environment

This briefing paper discusses the current knowledge on the effects of tyre wear particles on our health and environment, highlights the need for an ambitious research agenda to build further understanding of the impacts on people and nature and develop solutions, and includes recommendations for policymakers.

Report

Wang S, Douglas JO, Lovell E, Wilson N, Guo L, Gault B, Ryan MP, Giuliani Fet al., 2023, Near-atomic scale chemical analysis of interfaces in a La(Fe,Mn,Si)13-based magnetocaloric material, Scripta Materialia, Vol: 224, Pages: 1-6, ISSN: 1359-6462

La(Fe,Mn,Si)13-based magnetocaloric materials are one of the most promising material families for the realisation of near-room temperature magnetic refrigeration. The functional and mechanical properties of these materials crucially depend on their chemistry, which is difficult to control at interfaces between microstructural units. Atom probe tomography was employed to reveal the local elemental distribution at the α-Fe/1:13 phase boundary and the 1:13/1:13 grain boundary. Strong Mn segregation (and Fe depletion) at the α-Fe/1:13 phase boundary suggests the potential effect of phase boundary area on the Curie temperature of the material. A local off-1:13 stoichiometry layer at the 1:13/1:13 grain boundary may adversely affect the magnetocaloric performance. Routes to mitigate the negative effects of interfaces on the functional and mechanical performance of these materials are discussed, in order to achieve durable and efficient operation of magnetic cooling devices.

Journal article

Pek ME, Ackerman AK, Appleton M, Ryan MP, Pedrazzini Set al., 2023, Development of a novel, impurity-scavenging, corrosion-resistant coating for Ni-based superalloy CMSX-4, Oxidation of Metals, Vol: 99, Pages: 3-13, ISSN: 0030-770X

Sulfur, a common impurity arising from atmospheric and environmental contamination, is highly corrosive and detrimental to the lifespan of nickel superalloys in jet engines. However, sulfur-scavenging coatings have yet to be explored. Our study presents the successful development of a stable, uniform, impurity-scavenging Ni-Mn coating on Ni-based superalloy CMSX-4, through electroplating. The coating was characterised via combined scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. An optimal coating thickness of > 600 nm was deposited. The coated alloy was exposed to corrosive salt mixture 98% Na2SO4–2% NaCl at 550 °C for 100 h, mimicking engine exposure conditions, thereby proving that the coating successfully trapped sulfur and prevented its diffusion into an underlying alloy. This work presents a promising development for the prevention of sulfur-induced corrosion in industrial setting such as gas turbine engine, where the effects of sulfur diffusion into the bulk alloy could lead to premature failure.

Journal article

Morton W, Joyce C, Taylor J, Ryan M, Angioletti-Uberti S, Xie Fet al., 2023, Modeling Au nanostar geometry in bulk solutions., The Journal of Physical Chemistry C: Energy Conversion and Storage, Optical and Electronic Devices, Interfaces, Nanomaterials, and Hard Matter, Vol: 127, Pages: 1680-1686, ISSN: 1932-7447

The findings within make it possible to reference gold nanostars based on their geometric properties, similar to how a radius describes a nanosphere, rather than just the LSPR of the structure-the current practice. The average tip approximation presented reduces the complexity of nanostars in discrete dipole approximation simulations. By matching the projected area and LSPR of the modeled nanostars to synthesized nanostars, the volume, surface area, and number of tips can be approximated without a lengthy characterization process. Knowing the nanoparticle geometry can determine drug carrier capacity, an approximate number of hot spots for EM imaging, and how the particle will interact with cells. The geometric data obtained will drive the biological application and increase the usability of this particle class.

Journal article

Tort R, Westhead O, Spry M, Davies BJV, Ryan MP, Titirici M-M, Stephens IELet al., 2023, Nonaqueous Li-Mediated Nitrogen Reduction: Taking Control of Potentials, ACS ENERGY LETTERS, Pages: 1003-1009, ISSN: 2380-8195

Journal article

Westhead O, Spry M, Bagger A, Shen Z, Yadegari H, Favero S, Tort R, Titirici M, Ryan MP, Jervis R, Katayama Y, Aguadero A, Regoutz A, Grimaud A, Stephens IELet al., 2023, The role of ion solvation in lithium mediated nitrogen reduction ( Nov, 10.1039/D2TA07686A, 2022), JOURNAL OF MATERIALS CHEMISTRY A, ISSN: 2050-7488

Journal article

Tian T, Xu J, Abdolazizi A, Ji C, Hou J, Riley DJ, Yan C, Ryan MP, Xie F, Petit Cet al., 2023, Occurrence, geochemical characteristics, enrichment, and ecological risks of rare earth elements in sediments of "the Yellow river- Estuary- bay" system*, MATERIALS TODAY NANO, Vol: 21, ISSN: 2588-8420

Journal article

Alsalem MM, Ryan MP, Campbell AN, Campbell KSet al., 2023, Modelling of CO<inf>2</inf> corrosion and FeCO<inf>3</inf> formation in NaCl solutions, Chemical Engineering Journal, Vol: 451, ISSN: 1385-8947

The corrosivity of carbon dioxide (CO2) corrosion and iron carbonate (FeCO3) layer formation in sodium chloride (NaCl) solutions (1–12 % w/v) were investigated through electrochemical experiments and modelling. Relying on electrochemical measurements (Potentiodynamic polarisation) and simplified current density expressions (employing only H+ activity), reaction enthalpies (ΔH) and rate constants (Kr) for Fe dissolution, H2 evolution and H2O reduction reactions were estimated over a temperature range of 40–80 °C. Additionally, a revised FeCO3 precipitation rate expression was developed based on a newly derived FeCO3 solubility product (Ksp), integrating the effects of temperature and ionic strength (using activity coefficients). Collectively, this yielded a new CO2 corrosion prediction model accounting for the presence of a developing layer of FeCO3 in NaCl solutions. The model was validated over a broad range of conditions (pH, temperature, pressure and NaCl concentrations) by employing the corrosion rate and FeCO3 characteristics as metrics. Notably, it was shown that the activities of dissolved CO2 and Cl− were not essential to predict the electrochemical response of anodic processes. Furthermore, it was demonstrated that increasing NaCl concentration resulted in a complexly evolving environment where porous, less protective FeCO3 layers were formed.

Journal article

Stephens IEL, Chan K, Bagger A, Boettcher SW, Bonin J, Boutin E, Buckley AK, Buonsanti R, Cave ER, Chang X, Chee SW, da Silva AHM, de Luna P, Einsle O, Endrodi B, Escudero-Escribano M, de Araujo JVF, Figueiredo MC, Hahn C, Hansen KU, Haussener S, Hunegnaw S, Huo Z, Hwang YJ, Janaky C, Jayathilake BS, Jiao F, Jovanov ZP, Karimi P, Koper MTM, Kuhl KP, Lee WH, Liang Z, Liu X, Ma S, Ma M, Oh H-S, Robert M, Cuenya BR, Rossmeisl J, Roy C, Ryan MP, Sargent EH, Sebastian-Pascual P, Seger B, Steier L, Strasser P, Varela AS, Vos RE, Wang X, Xu B, Yadegari H, Zhou Yet al., 2022, 2022 roadmap on low temperature electrochemical CO2 reduction, JOURNAL OF PHYSICS-ENERGY, Vol: 4, ISSN: 2515-7655

Journal article

Tian T, Xu J, Xiong Y, Ramanan N, Ryan M, Xie F, Petit Cet al., 2022, Cu-functionalised porous boron nitride derived from a metal–organic framework, Journal of Materials Chemistry A, Vol: 10, Pages: 20580-20592, ISSN: 2050-7488

Porous boron nitride (BN) displays promising properties for interfacial and bulk processes, e.g. molecular separation and storage, or (photo)catalysis. To maximise porous BN's potential in such applications, tuning and controlling its chemical and structural features is key. Functionalisation of porous BN with metal nanoparticle represents one possible route, albeit a hardly explored one. Metal–organic frameworks (MOFs) have been widely used as precursors to synthesise metal functionalised porous carbon-based materials, yet MOF-derived metal functionalised inorganic porous materials remain unexplored. Here, we hypothesise that MOFs could also serve as a platform to produce metal-functionalised porous BN. We have used a Cu-containing MOF, i.e. Cu/ZIF-8, as a precursor and successfully obtained porous BN functionalised with Cu nanoparticles (i.e. Cu/BN). While we have shown control of the Cu content, we have not yet demonstrated it for the nanoparticle size. The functionalisation has led to improved light harvesting and enhanced electron–hole separation, which have had a direct positive impact on the CO2 photoreduction activity (production formation rate 1.5 times higher than pristine BN and 12.5 times higher than g-C3N4). In addition, we have found that the metal in the MOF precursor impacts porous BN's purity. Unlike Cu/ZIF-8, a Co-containing ZIF-8 precursor led to porous C-BN (i.e. BN with a large amount of C in the structure). Overall, given the diversity of metals in MOFs, one could envision our approach as a method to produce a library of different metal functionalised porous BN samples.

Journal article

Xu J, Morton W, Jones D, Tabish TA, Ryan MP, Xie Fet al., 2022, Significant quantum yield enhancement for near infrared fluorescence dyes by silica templated silver nanorods, APPLIED PHYSICS REVIEWS, Vol: 9, ISSN: 1931-9401

Journal article

Rodenkirchen C, Appleton M, Ryan MP, Pedrazzini Set al., 2022, A review on atom probe and correlative microscopy studies of corrosion in nickel-based superalloys, Materials Research Society (MRS) Bulletin, Vol: 47, Pages: 706-717, ISSN: 0883-7694

This article discusses challenges faced in the development of new Ni-based superalloys for applications in the hottest sections of turbine engines and the use of atom probe tomography and correlative microscopy for characterization of these complex alloys with regards to microstructural and compositional design. The two strengthening phases γ and γ′ are introduced and the precipitation of topologically close-packed phases and their potential detrimental effects on superalloy properties are reviewed. Mechanisms of environmental degradation, namely oxidation and hot corrosion, are elucidated and recent research studies on a new phenomenon of hot corrosion at relatively low temperatures below 600°C are discussed. The effect of individual alloying elements on superalloy properties is reviewed, with a focus on Mo and W. The use of atom probe in correlation with state-of-the-art microscopy, spectroscopy and diffraction techniques to study and understand oxidation and corrosion of Ni-based superalloys, including crack tip investigations, is presented.

Journal article

Ramesh A, Laycock N, Shenai P, Barnes A, Van Santen H, Thyagarajan A, Abdullah AM, Ryan MPet al., 2022, Critical Deposit Loading Thresholds for Under Deposit Corrosion in Steam Generators, CORROSION, Vol: 77, Pages: 584-598, ISSN: 0010-9312

Journal article

Wang S, Gavalda-Diaz O, Luo T, Guo L, Lovell E, Wilson N, Gault B, Ryan MP, Giuliani Fet al., 2022, The effect of hydrogen on the multiscale mechanical behaviour of a La(Fe,Mn,Si)13-based magnetocaloric material, Journal of Alloys and Compounds, Vol: 906, Pages: 1-10, ISSN: 0925-8388

Magnetocaloric cooling offers the potential to improve the efficiency of refrigeration devices and hence cut the significant CO2 emissions associated with cooling processes. A critical issue in deployment of this technology is the mechanical degradation of the magnetocaloric material during processing and operation, leading to limited service-life. The mechanical properties of hydrogenated La(Fe,Mn,Si)13-based magnetocaloric material are studied using macroscale bending tests of polycrystalline specimens and in situ micropillar compression tests of single crystal specimens. The impact of hydrogenation on the mechanical properties are quantified. Understanding of the deformation/failure mechanisms is aided by characterization with transmission electron microscopy and atom probe tomography to reveal the arrangement of hydrogen atoms in the crystal lattice. Results indicate that the intrinsic strength of this material is ~3-6 GPa and is dependent on the crystal orientation. Single crystals under compressive load exhibit shearing along specific crystallographic planes. Hydrogen deteriorates the strength of La(Fe,Mn,Si)13 through promotion of transgranular fracture. The weakening effect of hydrogen on single crystals is anisotropic; it is significant upon shearing parallel to the {111} crystallographic planes but is negligible when the shear plane is {001}-oriented. APT analysis suggests that this is associated with the close arrangement of hydrogen atoms on {222} planes.

Journal article

Yallop M, Wang Y, Masuda S, Daniels J, Ockenden A, Masani H, Scott TB, Xie F, Ryan M, Jones C, Porter AEet al., 2022, Quantifying impacts of titanium dioxide nanoparticles on natural assemblages of riverine phytobenthos and phytoplankton in an outdoor setting, SCIENCE OF THE TOTAL ENVIRONMENT, Vol: 831, ISSN: 0048-9697

Journal article

Xu Z, Wang J, Guo Z, Xie F, Liu H, Yadegari H, Tebyetekerwa M, Ryan MP, Hu Y-S, Titirici M-Met al., 2022, The Role of Hydrothermal Carbonization in Sustainable Sodium-Ion Battery Anodes, ADVANCED ENERGY MATERIALS, Vol: 12, ISSN: 1614-6832

Journal article

Gomez-Gonzalez MA, Rehkamper M, Han Z, Ryan MP, Laycock A, Porter AEet al., 2022, ZnO Nanomaterials and Ionic Zn Partition within Wastewater Sludge Investigated by Isotopic Labeling, Global Challenges, Vol: 6, ISSN: 2056-6646

The increasing commercial use of engineered zinc oxide nanomaterials necessitates a thorough understanding of their behavior following their release into wastewater. Herein, the fates of zinc oxide nanoparticles (ZnO NPs) and ionic Zn in a real primary sludge collected from a municipal wastewater system are studied via stable isotope tracing at an environmentally relevant spiking concentration of 15.2 µg g−1. Due to rapid dissolution, nanoparticulate ZnO does not impart particle-specific effects, and the Zn ions from NP dissolution and ionic Zn display indistinguishable behavior as they partition equally between the solid, liquid, and ultrafiltrate phases of the sludge over a 4-h incubation period. This work provides important constraints on the behavior of engineered ZnO nanomaterials in primary sludge—the first barrier in a wastewater treatment plant—at low, realistic concentrations. As the calculated solid–liquid partition coefficients are significantly lower than those reported in prior studies that employ unreasonably high spiking concentrations, this work highlights the importance of using low, environmentally relevant doses of engineered nanomaterials in experiments to obtain accurate risk assessments.

Journal article

Wang S, Lovell E, Guo L, Wilson N, Ryan MP, Giuliani Fet al., 2022, Environment-assisted crack nucleation in La(Fe,Mn,Si)13-based magnetocaloric materials, International Journal of Refrigeration, Vol: 135, Pages: 1-4, ISSN: 0140-7007

Cracking in La(Fe,Si)13-based magnetocaloric materials has been observed to predominantly form around La-rich (La2O3) particles and pose a threat to their long-term structural integrity. To understand the formation of these cracks, FIB cross-sectional polishing followed by SEM characterisation was employed to study local microstructural evolution after air exposure. Results suggest that volume expansion and internal degradation associated with a chemical reaction between La2O3 particles and water/moisture can lead to crack nucleation in the 1:13 phase adjacent to La-rich particles. This observation indicates that the formation of La-rich phase should be suppressed, or their size minimised during material processing to ensure the long-term structural integrity of La(Fe,Mn,Si)13 magnetocaloric materials.

Journal article

Aberdeen S, Hur CA, Cali E, Vandeperre L, Ryan MPet al., 2022, Acid resistant functionalised magnetic nanoparticles for radionuclide and heavy metal adsorption, Journal of Colloid and Interface Science, Vol: 608, Pages: 1728-1738, ISSN: 0021-9797

Coating superparamagnetic iron oxide NPs with SiO2 has been established in order to confer stability in acidic media. Acid stability tests were carried out between pH 1 and pH 7 to determine the effectiveness of the SiO2 passivating layer to protect the magnetic Fe3O4 core. Transmission Electron Microscopy (TEM) and zeta potential measurements have shown that uncoated Fe3O4 NPs exhibit rapid agglomeration and dissolution when exposed to acidic media, moving from a zeta potential of - 26 mV to a zeta potential of + 3 mV. In contrast, the SiO2 coating of the Fe3O4 NPs shows a very high degree of stability for over 14 months and the zeta potential of these NPs remained at ∼- 39 mV throughout the acid exposure and they showed no loss in magnetisaton. Due to the use of these NPs as a potential tool for heavy metal extraction, the stability of the surface functionalisation (in this case a phosphate complex) was also assessed. With a constant zeta potential of ∼ - 29 mV for POx-SiO2@Fe3O4 NP complex, the phosphate functionality was shown to be highly stable in the acidic conditions simulating the environment of certain nuclear wastes. ATR-FTIR was conducted after acid exposure confirming that the phosphate complex on the surface of the NPs remained present. Finally, preliminary sorption experiments were carried out with Pb(II), where the NP complexes shown complete removal of the heavy metals at pH 3 and pH 5.

Journal article

Westhead O, Spry M, Bagger A, Shen Z, Yadegari H, Favero S, Tort R, Titirici M, Ryan MP, Jervis R, Katayama Y, Aguadero A, Regoutz A, Grimaud A, Stephens IELet al., 2022, The role of ion solvation in lithium mediated nitrogen reduction, Journal of Materials Chemistry A, ISSN: 2050-7488

Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO4 and above the electrode potential is stable for at least 12 hours at an applied current density of −2 mA cm−2 at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N2 reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed via Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO4, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy.

Journal article

Barrio Hermida J, Pedersen A, Feng J, Sarma S, Wang M, Li A, Yadegari H, Luo H, Ryan M, Titirici M, Stephens Iet al., 2022, Metal coordination in C2N-like materials towards dual atom catalysts for oxygen reduction, Journal of Materials Chemistry A, ISSN: 2050-7488

Journal article

Sundaresan SM, Fothergill SM, Tabish TA, Ryan M, Xie Fet al., 2021, Aptamer biosensing based on metal enhanced fluorescence platform: A promising diagnostic tool, Applied Physics Reviews, Vol: 8, Pages: 1-14, ISSN: 1931-9401

Diagnosis of disease at an early, curable, and reversible stage allows more conservative treatment and better patient outcomes. Fluorescence biosensing is a widely used method to detect biomarkers, which are early indicators of disease. Importantly, biosensing requires a high level of sensitivity. Traditionally, these sensors use antibodies or enzymes as biorecognition molecules; however, these can lack the specificity required in a clinical setting, limiting their overall applicability. Aptamers are short, single stranded nucleotides that are receiving increasing attention over traditional recognition molecules. These exhibit many advantages, such as high specificity, making them promising for ultrasensitive biosensors. Metal enhanced fluorescence (MEF) utilizes plasmonic materials, which can increase the sensitivity of label-based fluorescent biosensors. The fluorescence enhancement achieved by placing metallic nanostructures in close proximity to fluorophores allows for detection of ultra-low biomarker concentrations. Plasmonic biosensors have been successfully implemented as diagnostic tools for a number of diseases, such as cancer, yet reproducible systems exhibiting high specificity and the ability to multiplex remain challenging. Similarly, while aptasensors have been extensively reported, few systems currently incorporate MEF, which could drastically improve biosensor sensitivity. Here, we review the latest advancements in the field of aptamer biosensing based on MEF that have been explored for the detection of a wide variety of biological molecules. While this emerging biosensing technology is still in its infant stage, we highlight the potential challenges and its clinical potential in early diagnosis of diseases.

Journal article

Alsalem MM, Camilla S, Ryan MP, Campbell KSet al., 2021, Understanding the Role of NaCl Concentration on the Corrosion of Carbon Steel and FeCO3 Formation in CO2-Containing Electrolytes, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, Vol: 60, Pages: 12032-12048, ISSN: 0888-5885

Journal article

Gomez-Gonzalez MA, Koronfel MA, Pullin H, Parker JE, Quinn PD, Inverno MD, Scott TB, Xie F, Voulvoulis N, Yallop ML, Ryan MP, Porter AEet al., 2021, Nanoscale chemical imaging of nanoparticles under real-world wastewater treatment conditions, Advanced Sustainable Systems, Vol: 5, ISSN: 2366-7486

Understanding nanomaterial transformations within wastewater treatment plants is an important step to better predict their potential impact on the environment. Here, spatially resolved, in situ nano-X-ray fluorescence microscopy is applied to directly observe nanometer-scale dissolution, morphological, and chemical evolution of individual and aggregated ZnO nanorods in complex “real-world” conditions: influent water and primary sludge collected from a municipal wastewater system. A complete transformation of isolated ZnO nanorods into ZnS occurs after only 1 hour in influent water, but larger aggregates of the ZnO nanorods transform only partially, with small contributions of ZnS and Zn-phosphate (Zn3(PO4)2) species, after 3 hours. Transformation of aggregates of the ZnO nanorods toward mixed ZnS, Zn adsorbed to Fe-oxyhydroxides, and a large contribution of Zn3(PO4)2 phases are observed during their incubation in primary sludge for 3 hours. Discrete, isolated ZnO regions are imaged with unprecedented spatial resolution, revealing their incipient transformation toward Zn3(PO4)2. Passivation by transformation(s) into mixtures of less soluble phases may influence the subsequent bioreactivity of these nanomaterials. This work emphasizes the importance of imaging the nanoscale chemistry of mixtures of nanoparticles in highly complex, heterogeneous semi-solid matrices for improved prediction of their impacts on treatment processes, and potential environmental toxicity following release.

Journal article

Guo L, Thornton DB, Koronfel MA, Stephens IEL, Ryan MPet al., 2021, Degradation in lithium ion battery current collectors, JPhys Energy, Vol: 3, ISSN: 2515-7655

Lithium ion battery (LIB) technology is the state-of-the-art rechargeable energy storage technology for electric vehicles, stationary energy storage and personal electronics. However, a wide variety of degradation effects still contribute to performance limitations. The metallic copper and aluminium current collectors in an LIB can be subject to dissolution or other reactions with the electrolytes. Corrosion of these metal foils is significantly detrimental to the overall performance of an LIB, however the mechanisms of this degradation are poorly understood. This review summarises the key effects contributing to metal current collector degradation in LIBs as well as introduces relevant corrosion and LIB principles. By developing the understanding of these complex chemistries, LIB degradation can be mitigated, enabling safer operation and longer lifetimes.

Journal article

Yadegari H, Koronfel MA, Wang K, Thornton DB, Stephens IEL, Molteni C, Haynes PD, Ryan MPet al., 2021, Operando measurement of layer breathing modes in lithiated graphite, ACS Energy Letters, Vol: 6, Pages: 1633-1638, ISSN: 2380-8195

Despite their ubiquitous usage and increasing societal dependence on Li-ion batteries, there remains a lack of detailed empirical evidence of Li intercalation/deintercalation into graphite even though this process dictates the performance, longevity, and safety of the system. Here, we report direct detection and dissociation of specific crystallographic phases in the lithiated graphite, which form through a stepwise staging process. Using operando measurements, LiC18, LiC12, and LiC6 phases are observed via distinct low-frequency Raman features, which are the result of displacement of the graphite lattice by induced local strain. Density functional theory calculations confirm the nature of the Raman-active vibrational modes, to the layer breathing modes (LBMs) of the lithiated graphite. The new findings indicate graphene-like characteristics in the lithiated graphite under the deep charged condition due to the imposed strain by the inserted Li. Moreover, our approach also provides a simple experimental tool to measure induced strain in the graphite structure under full intercalation conditions.

Journal article

Alzahabi KH, Usmani O, Georgiou TK, Ryan MP, Robertson BD, Tetley TD, Porter AEet al., 2020, Approaches to treating tuberculosis by encapsulating metal ions and anti-mycobacterial drugs utilizing nano- and microparticle technologies, Emerging Topics in Life Sciences, Vol: 4, Pages: 581-600, ISSN: 2397-8554

Tuberculosis (TB) is caused by a bacterial infection that affects a number of human organs, primarily the lungs, but also the liver, spleen, and spine, causing key symptoms of fever, fatigue, and persistent cough, and if not treated properly, can be fatal. Every year, 10 million individuals become ill with active TB resulting with a mortality approximating 1.5 million. Current treatment guidelines recommend oral administration of a combination of first-line anti-TB drugs for at least 6 months. While efficacious under optimum conditions, ‘Directly Observed Therapy Short-course’ (DOTS) is not without problems. The long treatment time and poor pharmacokinetics, alongside drug side effects lead to poor patient compliance and has accelerated the emergence of multi-drug resistant (MDR) organisms. All this, combined with the limited number of newly discovered TB drugs to treat MDR-TB and shorten standard therapy time, has highlighted the need for new targeted drug delivery systems. In this respect, there has been recent focus on micro- and nano-particle technologies to prepare organic or/and metal particles loaded with TB drugs to enhance their efficacy by targeted delivery via the inhaled route. In this review, we provide a brief overview of the current epidemiology of TB, and risk factors for progression of latent stage tuberculosis (LTBI) to the active TB. We identify current TB treatment regimens, newly discovered TB drugs, and identify studies that have used micro- or nano-particles technologies to design a reliable inhalation drug delivery system to treat TB more effectively.

Journal article

Michaeloudes C, Seiffert J, Chen S, Ruenraroengsak P, Bey L, Theodorou IG, Ryan M, Cui X, Zhang J, Shaffer M, Tetley T, Porter AE, Chung KFet al., 2020, Effect of silver nanospheres and nanowires on human airway smooth muscle cells: role of sulfidation, Nanoscale Advances, Vol: 2, Pages: 5635-5647, ISSN: 2516-0230

Background: The toxicity of inhaled silver nanoparticles on contractile and pro-inflammatory airway smooth muscle cells (ASMCs) that control airway calibre is unknown. We explored the oxidative activities and sulfidation processes of the toxic-inflammatory response. Method: Silver nanospheres (AgNSs) of 20 nm and 50 nm diameter and silver nanowires (AgNWs), short S-AgNWs, 1.5 μm and long L-AgNWs, 10 μm, both 72 nm in diameter were manufactured. We measured their effects on cell proliferation, mitochondrial reactive oxygen species (ROS) release and membrane potential, and also performed electron microscopic studies. Main results and findings: The greatest effects were observed for the smallest particles with the highest specific surface area and greatest solubility that were avidly internalised. ASMCs exposed to 20 nm AgNSs (25 μg mL−1) for 72 hours exhibited a significant decrease in DNA incorporation (−72.4%; p < 0.05), whereas neither the 50 nm AgNSs nor the s-AgNWs altered DNA synthesis or viability. There was a small reduction in ASMC proliferation for the smaller AgNS, although Ag+ at 25 μL mL−1 reduced DNA synthesis by 93.3% (p < 0.001). Mitochondrial potential was reduced by both Ag+ (25 μg mL−1) by 47.1% and 20 nm Ag NSs (25 μg mL−1) by 40.1% (*both at p < 0.05), but was not affected by 50 nm AgNSs and the AgNWs. None of the samples showed a change in ROS toxicity. However, malondialdehyde release, associated with greater total ROS, was observed for all AgNPs, to an extent following the geometric size (20 nm AgNS: 213%, p < 0.01; 50 nm AgNS: 179.5%, p < 0.01 and L-AgNWs by 156.2%, p < 0.05). The antioxidant, N-acetylcysteine, prevented the reduction in mitochondrial potential caused by 20 nm AgNSs. The smaller nanostructures were internalised and dissolved within the ASMCs with the formation of non-reactive silver sulphide (Ag2S) on their surface, but with very little uptake of L-AgNWs. When A

Journal article

Chen S, Greasley SL, Ong ZY, Naruphontjirakul P, Page SJ, Hanna J, Redpath AN, Tsigkou O, Rankin S, Ryan MP, Porter AE, Jones JRet al., 2020, Biodegradable zinc-containing mesoporous silica nanoparticles for cancer therapy, Materials Today, Vol: 6, Pages: 1-11, ISSN: 1369-7021

Triple-negative breast cancers are extremely aggressive with limited treatment options because of the reduced response of the cancerous cells to hormonal therapy. Here, monodispersed zinc-containing mesoporous silica nanoparticles (MSNPs-Zn) were produced as a tuneable biodegradable platform for delivery of therapeutic zinc ions into cells. We demonstrate that the nanoparticles were internalized by cells, and a therapeutic dose window was identified in which the MSNPs-Zn were toxic to breast cancer cells but not to healthy epithelial (MCF-10a) cells or to murine macrophages. A significant reduction in the viability of triple negative MDA-MB-231 and MCF-7 (ER+) breast cancer cells was seen following 24 h exposure to MSNPs-Zn. The more aggressive MDA-MB-231 cells, with higher metastatic potential, were more sensitive to MSNPs-Zn than the MCF-7 cells. MSNPs-Zn underwent biodegradation inside the cells, becoming hollow structures, as imaged by high-resolution transmission electron microscopy. The mesoporous silica nanoparticles provide a biodegradable vehicle for therapeutic ion release inside cells.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00170150&limit=30&person=true