Publications
21 results found
Siggins MK, Davies K, Fellows R, et al., 2023, Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19, Immunology, Vol: 168, Pages: 473-492, ISSN: 0019-2805
Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in an COVID-19 to date, a comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalised COVID-19 patients collected across the hospitalisation period as part of the UK ISARIC4C study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to heathy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.
Liew F, Talwar S, Cross A, et al., 2023, SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination, EBioMedicine, Vol: 87, Pages: 1-14, ISSN: 2352-3964
Background:Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced.Methods:In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data.Findings:Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination.Interpretation:The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity.Funding:This
Relph KA, Russell CD, Fairfield CJ, et al., 2022, Procalcitonin is not a reliable biomarker of bacterial coinfection in people with coronavirus disease 2019 undergoing microbiological investigation at the time of hospital admission, Open Forum Infectious Diseases, Vol: 9, ISSN: 2328-8957
Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11-1.70] ng/mL vs 0.24 [0.10-0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51-.60]).
Cordery R, Purba A, Begum L, et al., 2022, Frequency of transmission, asymptomatic shedding, and airborne spread of Streptococcus pyogenes in schoolchildren exposed to scarlet fever: a prospective, longitudinal, multicohort, molecular epidemiological, contact-tracing study in England, UK, The Lancet Microbe, Vol: 3, Pages: e366-e375, ISSN: 2666-5247
BackgroundDespite recommendations regarding prompt treatment of cases and enhanced hygiene measures, scarlet fever outbreaks increased in England between 2014 and 2018. We aimed to assess the effects of standard interventions on transmission of Streptococcus pyogenes to classroom contacts, households, and classroom environments to inform future guidance.MethodsWe did a prospective, longitudinal, multicohort, molecular epidemiological, contact-tracing study in six settings across five schools in Greater London, UK. Schools and nurseries were eligible to participate if they had reported two cases of scarlet fever within 10 days of each other among children aged 2–8 years from the same class, with the most recent case arising in the preceding 48 h. We cultured throat swabs from children with scarlet fever, classroom contacts, and household contacts at four timepoints. We also cultured hand swabs and cough plates from all cases in years 1 and 2 of the study, and from classroom contacts in year 2. Surface swabs from toys and other fomites in classrooms were cultured in year 1, and settle plates from classrooms were collected in year 2. Any sample with S pyogenes detected was recorded as positive and underwent emm genotyping and genome sequencing to compare with the outbreak strain.FindingsSix classes, comprising 12 cases of scarlet fever, 17 household contacts, and 278 classroom contacts were recruited between March 1 and May 31, 2018 (year 1), and between March 1 and May 31, 2019 (year 2). Asymptomatic throat carriage of the outbreak strains increased from 11 (10%) of 115 swabbed children in week 1, to 34 (27%) of 126 in week 2, to 26 (24%) of 108 in week 3, and then five (14%) of 35 in week 4. Compared with carriage of outbreak S pyogenes strains, colonisation with non-outbreak and non-genotyped S pyogenes strains occurred in two (2%) of 115 swabbed children in week 1, five (4%) of 126 in week 2, six (6%) of 108 in week 3, and in none of the 35 children in week 4
Siggins MK, Sriskandan S, 2021, Bacterial lymphatic metastasis in infection and immunity, Cells, Vol: 11, ISSN: 2073-4409
Lymphatic vessels permeate tissues around the body, returning fluid from interstitial spaces back to the blood after passage through the lymph nodes, which are important sites for adaptive responses to all types of pathogens. Involvement of the lymphatics in the pathogenesis of bacterial infections is not well studied. Despite offering an obvious conduit for pathogen spread, the lymphatic system has long been regarded to bar the onward progression of most bacteria. There is little direct data on live virulent bacteria, instead understanding is largely inferred from studies investigating immune responses to viruses or antigens in lymph nodes. Recently, we have demonstrated that extracellular bacterial lymphatic metastasis of virulent strains of Streptococcus pyogenes drives systemic infection. Accordingly, it is timely to reconsider the role of lymph nodes as absolute barriers to bacterial dissemination in the lymphatics. Here, we summarise the routes and mechanisms by which an increasing variety of bacteria are acknowledged to transit through the lymphatic system, including those that do not necessarily require internalisation by host cells. We discuss the anatomy of the lymphatics and other factors that influence bacterial dissemination, as well as the consequences of underappreciated bacterial lymphatic metastasis on disease and immunity.
Siggins MK, MacLennan CA, 2021, An adsorption method to prepare specific antibody-depleted normal human serum as a source of complement for human serum bactericidal assays for Salmonella, VACCINE, Vol: 39, Pages: 7503-7509, ISSN: 0264-410X
Gibson JF, Pidwill GR, Carnell OT, et al., 2021, Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species, PLoS Pathogens, Vol: 17, ISSN: 1553-7366
Staphylococcus aureus is a human commensal organism and opportunist pathogen, causing potentially fatal disease. The presence of non-pathogenic microflora or their components, at the point of infection, dramatically increases S. aureus pathogenicity, a process termed augmentation. Augmentation is associated with macrophage interaction but by a hitherto unknown mechanism. Here, we demonstrate a breadth of cross-kingdom microorganisms can augment S. aureus disease and that pathogenesis of Enterococcus faecalis can also be augmented. Co-administration of augmenting material also forms an efficacious vaccine model for S. aureus. In vitro, augmenting material protects S. aureus directly from reactive oxygen species (ROS), which correlates with in vivo studies where augmentation restores full virulence to the ROS-susceptible, attenuated mutant katA ahpC. At the cellular level, augmentation increases bacterial survival within macrophages via amelioration of ROS, leading to proliferation and escape. We have defined the molecular basis for augmentation that represents an important aspect of the initiation of infection.
Siggins MK, Thwaites RS, Openshaw PJM, 2021, Durability of immunity to SARS-CoV-2 and other respiratory viruses: (Trends in microbiology, 29, 648-662, 2021)., Trends in Microbiology, ISSN: 0966-842X
Siggins MK, Thwaites RS, Openshaw PJM, 2021, Durability of immunity to SARS-CoV-2 and other respiratory viruses, Trends in Microbiology, Vol: 29, Pages: 648-662, ISSN: 0966-842X
Even in nonpandemic times, respiratory viruses account for a vast global burden of disease. They remain a major cause of illness and death and they pose a perpetual threat of breaking out into epidemics and pandemics. Many of these respiratory viruses infect repeatedly and appear to induce only narrow transient immunity, but the situation varies from one virus to another. In the absence of effective specific treatments, understanding the role of immunity in protection, disease, and resolution is of paramount importance. These problems have been brought into sharp focus by the coronavirus disease 2019 (COVID-19) pandemic. Here, we summarise what is now known about adaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and draw comparisons with immunity to other respiratory viruses, focusing on the longevity of protective responses.
Thwaites RS, Sanchez Sevilla Uruchurtu A, Siggins MK, et al., 2021, Inflammatory profiles across the spectrum of disease reveal a distinct role for GM-CSF in severe COVID-19, Science Immunology, Vol: 6, Pages: 1-17, ISSN: 2470-9468
While it is now widely accepted that host inflammatory responses contribute to lung injury, the pathways that drive severity and distinguish coronavirus disease 2019 (COVID-19) from other viral lung diseases remain poorly characterized. We analyzed plasma samples from 471 hospitalized patients recruited through the prospective multicenter ISARIC4C study and 39 outpatients with mild disease, enabling extensive characterization of responses across a full spectrum of COVID-19 severity. Progressive elevation of levels of numerous inflammatory cytokines and chemokines (including IL-6, CXCL10, and GM-CSF) were associated with severity and accompanied by elevated markers of endothelial injury and thrombosis. Principal component and network analyses demonstrated central roles for IL-6 and GM-CSF in COVID-19 pathogenesis. Comparing these profiles to archived samples from patients with fatal influenza, IL-6 was equally elevated in both conditions whereas GM-CSF was prominent only in COVID-19. These findings further identify the key inflammatory, thrombotic, and vascular factors that characterize and distinguish severe and fatal COVID-19.
Triantafyllou E, Gudd C, Mawhin M-A, et al., 2020, PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury, Journal of Clinical Investigation, Vol: 131, Pages: 1-16, ISSN: 0021-9738
Acute liver failure (ALF) patients display systemic innate immune suppression and increased susceptibility to infections. PD-1 expression by macrophages has been associated with immune suppression during sepsis and cancer. We therefore examined the role of PD-1/PD-L1 pathway in regulating Kupffer cell inflammatory and antimicrobial responses in acetaminophen (APAP) induced acute liver injury. Using intravital imaging and flow cytometry we found impaired Kupffer cell bacterial clearance and systemic bacterial dissemination in mice with liver injury. Increased PD-1 and PD-L1 expression was detected in Kupffer cells and lymphocyte subsets, respectively, during resolution of injury. Gene expression profiling of PD-1+ Kupffer cells revealed an immune-suppressive profile and reduced pathogen responses. Compared to wild-type, PD-1 deficient or anti-PD-1 treated mice with liver injury showed improved Kupffer cell bacterial clearance, reduced tissue bacterial load and protection from sepsis. Blood sample analyses of ALF patients revealed enhanced PD-1 and PD-L1 expression of monocytes and lymphocytes, respectively, and that plasma soluble PD-L1 levels predict patient outcome and sepsis. PD-1 in vitro blockade restored monocyte functionality. Our study describes a role for PD-1/PD-L1 axis in suppressing Kupffer cell and monocyte antimicrobial responses after liver injury and suggests anti-PD-1 immunotherapy as a strategy to reduce infection susceptibility in ALF.
Siggins MK, Lynskey NN, Lamb L, et al., 2020, Extracellular bacterial lymphatic metastasis drives Streptococcus pyogenes systemic infection, Nature Communications, Vol: 11, ISSN: 2041-1723
Unassisted metastasis through the lymphatic system is a mechanism of dissemination thus far ascribed only to cancer cells. Here, we report that Streptococcus pyogenes also hijack lymphatic vessels to escape a local infection site, transiting through sequential lymph nodes and efferent lymphatic vessels to enter the bloodstream. Contrasting with previously reported mechanisms of intracellular pathogen carriage by phagocytes, we show S. pyogenes remain extracellular during transit, first in afferent and then efferent lymphatics that carry the bacteria through successive draining lymph nodes. We identify streptococcal virulence mechanisms important for bacterial lymphatic dissemination and show that metastatic streptococci within infected lymph nodes resist and subvert clearance by phagocytes, enabling replication that can seed intense bloodstream infection. The findings establish the lymphatic system as both a survival niche and conduit to the bloodstream for S. pyogenes, explaining the phenomenon of occult bacteraemia. This work provides new perspectives in streptococcal pathogenesis with implications for immunity.
Sharma H, Turner CE, Siggins MK, et al., 2019, Toxic shock syndrome toxin-1 evaluation and antibiotic impact in a transgenic model of staphylococcal soft tissue infection, mSphere, Vol: 4, ISSN: 2379-5042
Nonmenstrual toxic shock syndrome (nmTSS), linked to TSST-1-producing CC30 Staphylococcus aureus, is the leading manifestation of toxic shock syndrome (TSS). Due to case rarity and a lack of tractable animal models, TSS pathogenesis is poorly understood. We developed an S. aureus abscess model in HLA class II transgenic mice to investigate pathogenesis and treatment. TSST-1 sensitivity was established using murine spleen cell proliferation assays and cytokine assays following TSST-1 injection in vivo. HLA-DQ8 mice were infected subcutaneously with a tst-positive CC30 methicillin-sensitive S. aureus clinical TSS-associated isolate. Mice received intraperitoneal flucloxacillin, clindamycin, flucloxacillin and clindamycin, or a control reagent. Abscess size, bacterial counts, TSST-1 expression, and TSST-1 bioactivity were measured in tissues. Antibiotic effects were compared with the effects of control reagent. Purified TSST-1 expanded HLA-DQ8 T-cell Vβ subsets 3 and 13 in vitro and instigated cytokine release in vivo, confirming TSST-1 sensitivity. TSST-1 was detected in abscesses (0 to 8.0 μg/ml) and draining lymph nodes (0 to 0.2 μg/ml) of infected mice. Interleukin 6 (IL-6), gamma interferon (IFN-γ), KC (CXCL1), and MCP-1 were consistent markers of inflammation during infection. Clindamycin-containing antibiotic regimens reduced abscess size and TSST-1 production. Infection led to detectable TSST-1 in soft tissues, and TSST-1 was detected in draining lymph nodes, events which may be pivotal to TSS pathogenesis. The reduction in TSST-1 production and lesion size after a single dose of clindamycin underscores a potential role for adjunctive clindamycin at the start of treatment of patients suspected of having TSS to alter disease progression.
Lamb LE, Siggins MK, Scudamore C, et al., 2018, Impact of contusion injury on intramuscular emm1 group A-Streptococcus infection and Lymphatic spread, Virulence, Vol: 9, Pages: 1074-1084, ISSN: 2150-5594
Invasive group A Streptococcus (iGAS) is frequently associated with emm1 isolates, with an attendant mortality of around 20%. Cases occasionally arise in previously healthy individuals with a history of upper respiratory tract infection, soft tissue contusion, and no obvious portal of entry. Using a new murine model of contusion, we determined the impact of contusion on iGAS bacterial burden and phenotype. Calibrated mild blunt contusion did not provide a focus for initiation or seeding of GAS that was detectable following systemic GAS bacteremia, but instead enhanced GAS migration to the local draining lymph node following GAS inoculation at the same time and site of contusion. Increased migration to lymph node was associated with emergence of mucoid bacteria, although was not specific to mucoid bacteria. In one study, mucoid colonies demonstrated a significant increase in capsular hyaluronan that was not linked to a covRS or rocA mutation, but to a deletion in the promoter of the capsule synthesis locus, hasABC, resulting in a strain with increased fitness for lymph node migration. In summary, in the mild contusion model used, we could not detect seeding of muscle by GAS. Contusion promoted bacterial transit to the local lymph node. The consequences of contusion-associated bacterial lymphatic migration may vary depending on the pathogen and virulence traits selected.
Lynskey NN, Reglinski M, Calay D, et al., 2017, Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase, PLOS Pathogens, Vol: 13, Pages: 1-29, ISSN: 1553-7366
The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis.
Smith DS, Siggins MK, Gierula M, et al., 2016, Identification of commonly expressed exoproteins and proteolytic cleavage events by proteomic mining of clinically-relevant UK isolates of Staphylococcus aureus, Microbial Genomics, Vol: 2, ISSN: 2057-5858
The range of exoproteins and core exoproteome of 14 S. aureus isolates representing major lineages associated with asymptomatic carriage and clinical disease in the United Kingdom was identified by mass spectrometry proteomics using a combined database incorporating sequences derived from 39 S. aureus genomes. In all, 632 different proteins were identified and, of these, only 52 (8%) were found in all 14 isolates whereas 144 (23%) were found in just a single isolate. Comparison of the observed mass of each protein (based on migration by SDS-polyacrylamide electrophoresis) with its predicted mass (based on amino acid sequence) suggested that 95% of the proteins identified were not subject to any major post translational modification. Migration of 5% of proteins was not as expected: 1% of proteins migrated at a mass greater than predicted, while 4% of proteins appeared to have undergone proteolytic cleavage; these included SsaA2, Aur, SspP, Ebh as well as BlaR1, MecR1, FsH, OatA and LtaS. Intriguingly, a truncated SasG was produced by a single CC8 USA300-like strain. The analysis provided evidence of the marked heterogeneity in protein expression by S. aureus in broth, while yielding a core but narrow common exoproteome.
Hart PJ, O'Shaughnessy CM, Siggins MK, et al., 2016, Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen, PLOS One, Vol: 11, ISSN: 1932-6203
Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.
Siggins MK, Gill SK, Langford PR, et al., 2015, PHiD-CV induces anti-Protein D antibodies but does not augment pulmonary clearance of nontypeable Haemophilus influenzae in mice, Vaccine, Vol: 33, Pages: 4954-4961, ISSN: 1873-2518
BackgroundA recently-licensed 10-valent pneumococcal conjugate vaccine (PHiD-CV; Synflorix, GSK) uses Protein D from Haemophilus influenzae as a carrier protein. PHiD-CV therefore has the potential to provide additional protection against nontypeable H. influenzae (NTHi). NTHi frequently causes respiratory tract infections and is associated with significant morbidity and mortality worldwide and there is currently no vaccine.MethodsWe developed mouse models of NTHi infection and influenza/NTHi superinfection. Mice were immunized with PHiD-CV, heat-killed NTHi, or a 13-valent pneumococcal conjugate vaccine that did not contain Protein D (PCV13; Prevenar, Pfizer) and then infected intranasally with NTHi.ResultsInfection with NTHi resulted in weight loss, inflammation and airway neutrophilia. In a superinfection model, prior infection with pandemic H1N1 influenza virus (strain A/England/195/2009) augmented NTHi infection severity, even with a lower bacterial challenge dose. Immunization with PHiD-CV produced high levels of antibodies that were specific against Protein D, but not heat-killed NTHi. Immunization with PHiD-CV led to a slight reduction in bacterial load, but no change in disease outcome.ConclusionsPHiD-CV induced high levels of Protein D-specific antibodies, but did not augment pulmonary clearance of NTHi. We found no evidence to suggest that PHiD-CV will offer added benefit by preventing NTHi lung infection.
Siggins MK, O'Shaughnessy CM, Pravin J, et al., 2014, Differential timing of antibody-mediated phagocytosis and cell-free killing of invasive African Salmonella allows immune evasion, EUROPEAN JOURNAL OF IMMUNOLOGY, Vol: 44, Pages: 1093-1098, ISSN: 0014-2980
- Author Web Link
- Cite
- Citations: 16
Siggins MK, Cunningham AF, Marshall JL, et al., 2011, Absent bactericidal activity of mouse serum against invasive African nontyphoidal Salmonella results from impaired complement function but not a lack of antibody (vol 186, pg 2365, 2011), JOURNAL OF IMMUNOLOGY, Vol: 186, Pages: 4527-4527, ISSN: 0022-1767
Siggins MK, Cunningham AF, Marshall JL, et al., 2011, Absent Bactericidal Activity of Mouse Serum against Invasive African Nontyphoidal Salmonella Results from Impaired Complement Function but Not a Lack of Antibody, JOURNAL OF IMMUNOLOGY, Vol: 186, Pages: 2365-2371, ISSN: 0022-1767
- Author Web Link
- Cite
- Citations: 41
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.