Summary
Majid Taghavi joined Imperial in August 2021 to establish his interdisciplinary research group on Soft Robotic Transducers at the Department of Bioengineering. He aims to deliver the new generation of soft multifunctional actuators, sensors, and energy harvesting technologies, enabling monolithic soft robots for health applications.
Prior to this, Majid was a postdoctoral researcher in SoftLab, university of Bristol, where he introduced multiple artificial muscle technologies. For example, he developed a new class of electric actuators with a gigantic force amplification, the highest contraction among any actuation technologies (> 99.8%), and a power density equivalent to human muscle. Majid was awarded his PhD in BioRobotics from Scuola Superiore Sant'Anna with the highest honor, receiving the Italian Institute of Technology scholarship, where he developed various electromechanical and bioelectrochemical energy harvesting and self-powered sensing technologies.
Research interests:
- Soft Transducers (actuators, sensors, energy harvesting)
- Bifunctional transducers (e.g. proprioceptive artificial muscles, self-powered sensors)
- Soft Robots (e.g. wearable and implantable robots)
- Smart materials and intelligent structures (e.g. variable stiffness)
Open positions:
Visit the Soft Robotic Transducer Lab for open positions
Selected Publications
Journal Articles
Diteesawat RS, Helps T, Taghavi M, et al. , 2021, Electro-pneumatic pumps for soft robotics, Science Robotics, Vol:6, ISSN:2470-9476
Helps T, Taghavi M, Wang S, et al. , 2020, Twisted Rubber Variable-Stiffness Artificial Muscles, Soft Robotics, Vol:7, ISSN:2169-5172, Pages:386-395
Helps T, Taghavi M, Rossiter J, 2019, Thermoplastic electroactive gels for 3D-printable artificial muscles, Smart Materials and Structures, Vol:28, ISSN:0964-1726
Taghavi M, Helps T, Rossiter J, 2018, Electro-ribbon actuators and electro-origami robots, Science Robotics, Vol:3, ISSN:2470-9476
Taghavi M, Helps T, Huang B, et al. , 2018, 3D-Printed Ready-To-Use Variable-Stiffness Structures, Ieee Robotics and Automation Letters, Vol:3, ISSN:2377-3766, Pages:2402-2407
Taghavi M, Stinchcombe A, Greenman J, et al. , 2016, Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC, Bioinspiration & Biomimetics, Vol:11, ISSN:1748-3182
Taghavi M, Beccai L, 2015, A contact-key triboelectric nanogenerator: Theoretical and experimental study on motion speed influence, Nano Energy, Vol:18, ISSN:2211-2855, Pages:283-292
Taghavi M, Sadeghi A, Mondini A, et al. , 2015, Triboelectric smart machine elements and self-powered encoder, Nano Energy, Vol:13, ISSN:2211-2855, Pages:92-102
Taghavi M, Sadeghi A, Mazzolai B, et al. , 2014, Triboelectric-based harvesting of gas flow energy and powerless sensing applications, Applied Surface Science, Vol:323, ISSN:0169-4332, Pages:82-87
Taghavi M, Greenman J, Beccai L, et al. , 2014, High-Performance, Totally Flexible, Tubular Microbial Fuel Cell, Chemelectrochem, Vol:1, ISSN:2196-0216, Pages:1994-1999
Taghavi M, Mattoli V, Sadeghi A, et al. , 2014, A Novel Soft Metal-Polymer Composite for Multidirectional Pressure Energy Harvesting, Advanced Energy Materials, Vol:4, ISSN:1614-6832
Taghavi M, Mattoli V, Mazzolai B, et al. , 2013, Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method, Nanoscale, Vol:5, ISSN:2040-3364, Pages:3505-3513