Imperial College London

ProfessorMasaoTakata

Faculty of MedicineDepartment of Surgery & Cancer

Magill Chair in Anaesthetics & Head of Division of APMIC
 
 
 
//

Contact

 

+44 (0)20 3315 8816m.takata

 
 
//

Location

 

G3.46Chelsea and Westminster HospitalChelsea and Westminster Campus

//

Summary

 

Publications

Publication Type
Year
to

136 results found

Koh MW, Baldi RF, Soni S, Handslip R, Tan YY, O'Dea KP, Malesevic M, McAuley DF, O'Kane CM, Patel BV, Takata M, Wilson MRet al., 2021, Secreted extracellular cyclophilin a is a novel mediator of ventilator induced lung injury., American Journal of Respiratory and Critical Care Medicine, ISSN: 1073-449X

RATIONALE: Mechanical ventilation is a mainstay of intensive care but contributes to the mortality of patients through ventilator induced lung injury. Extracellular Cyclophilin A is an emerging inflammatory mediator and metalloproteinase inducer, and the gene responsible for its expression has recently been linked to COVID-19 infection. OBJECTIVES: Here we explore the involvement of extracellular Cyclophilin A in the pathophysiology of ventilator-induced lung injury. METHODS: Mice were ventilated with low or high tidal volume for up to 3 hours, with or without blockade of extracellular Cyclophilin A signalling, and lung injury and inflammation were evaluated. Human primary alveolar epithelial cells were exposed to in vitro stretch to explore the cellular source of extracellular Cyclophilin A, and Cyclophilin A levels were measured in bronchoalveolar lavage fluid from acute respiratory distress syndrome patients, to evaluate clinical relevance. MEASUREMENTS AND MAIN RESULTS: High tidal volume ventilation in mice provoked a rapid increase in soluble Cyclophilin A levels in the alveolar space, but not plasma. In vivo ventilation and in vitro stretch experiments indicated alveolar epithelium as the likely major source. In vivo blockade of extracellular Cyclophilin A signalling substantially attenuated physiological dysfunction, macrophage activation and matrix metalloproteinases. Finally, we found that patients with acute respiratory distress syndrome showed markedly elevated levels of extracellular Cyclophilin A within bronchoalveolar lavage. CONCLUSIONS: Cyclophilin A is upregulated within the lungs of injuriously ventilated mice (and critically ill patients), where it plays a significant role in lung injury. Extracellular Cyclophilin A represents an exciting novel target for pharmacological intervention.

Journal article

Soni S, Garner J, O'Dea K, Kohn M, Finney L, Tirlapur N, Srikanthan K, aboelhassan A, Singh S, Wilson M, Wedzicha J, Kemp S, Usmani O, Shah P, Takata Met al., 2021, Intra-alveolar neutrophil-derived microvesicles are associated with disease severity in COPD, American Journal of Physiology: Lung Cellular and Molecular Physiology, Vol: 320, Pages: L73-L83, ISSN: 1040-0605

Despite advances in the pathophysiology of Chronic Obstructive Pulmonary Disease (COPD), there is a distinct lack of biochemical markers to aid clinical management. Microvesicles (MVs) have been implicated in the pathophysiology of inflammatory diseases including COPD but their association to COPD disease severity remains unknown. We analysed different MV populations in plasma and bronchoalveolar lavage fluid (BALF) taken from sixty-two patients with mild to very severe COPD (51% male; mean age: 65.9 years). These patients underwent comprehensive clinical evaluation (symptom scores, lung function, exercise testing) and the capacity of MVs to be clinical markers of disease severity was assessed. We successfully identified various MV subtype populations within BALF (leukocyte, PMN (polymorphonuclear leukocyte i.e. neutrophil), monocyte, epithelial and platelet MVs) and plasma (leukocyte, PMN, monocyte and endothelial MVs), and compared each MV population to disease severity. BALF neutrophil MVs were the only population to significantly correlate with the clinical evaluation scores including FEV1, mMRC dyspnoea score, 6-minute walk test, hyperinflation and gas transfer. BALF neutrophil MVs, but not neutrophil cell numbers, also strongly correlated with BODE index. We have undertaken, for the first time, a comprehensive evaluation of MV profiles within BALF/plasma of COPD patients. We demonstrate that BALF levels of neutrophil-derived MVs are unique in correlating with a number of key functional and clinically-relevant disease severity indices. Our results show the potential of BALF neutrophil MVs for a COPD biomarker that tightly links a key pathophysiological mechanism of COPD (intra-alveolar neutrophil activation) with clinical severity/outcome.

Journal article

Tsiridou DM, O'Dea KP, Tan YY, Takata Met al., 2020, Late Breaking Abstract - Myeloid-derived microvesicles as acute mediators of sepsis-induced lung vascular inflammation, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Soni S, Romano R, O'Dea K, Patel B, Tatham K, Koh M, Tsiridou D, Simon A, Thakuria L, Wilson M, Reed A, Marczin N, Takata Met al., 2020, Intra-alveolar neutrophil-derived microvesicles predict development of primary graft dysfunction after lung transplantation, Publisher: EUROPEAN RESPIRATORY SOC JOURNALS LTD, ISSN: 0903-1936

Conference paper

Koh M, Takata M, Wilson M, 2020, Cyclophilin A as a Novel Mediator in Ventilator-Induced Lung Injury, Annual Meeting on Experimental Biology, Publisher: WILEY, ISSN: 0892-6638

Conference paper

Tsiridou D, O'Dea K, Tan Y, Takata Met al., 2020, Neutrophil-Derived Microvesicle Uptake under Flow Conditions in an I<it>n Vitro</it> Model of Pulmonary Vascular Inflammation, Annual Meeting on Experimental Biology, Publisher: WILEY, ISSN: 0892-6638

Conference paper

Hua R, Edey LF, O'Dea KP, Howe L, Herbert BR, Cheng W, Zheng X, MacIntyre DA, Bennett PR, Takata M, Johnson MRet al., 2020, CCR2 mediates the adverse effects of LPS in the pregnant mouse, Biology of Reproduction, Vol: 102, Pages: 445-455, ISSN: 0006-3363

In our earlier work, we found that intrauterine (i.u.) and intraperitoneal (i.p.) injection of LPS (10-μg serotype 0111:B4) induced preterm labor (PTL) with high pup mortality, marked systemic inflammatory response and hypotension. Here, we used both i.u. and i.p. LPS models in pregnant wild-type (wt) and CCR2 knockout (CCR2-/-) mice on E16 to investigate the role played by the CCL2/CCR2 system in the response to LPS. Basally, lower numbers of monocytes and macrophages and higher numbers of neutrophils were found in the myometrium, placenta, and blood of CCR2-/- vs. wt mice. After i.u. LPS, parturition occurred at 14 h in both groups of mice. At 7 h post-injection, 70% of wt pups were dead vs. 10% of CCR2-/- pups, but at delivery 100% of wt and 90% of CCR2-/- pups were dead. Myometrial and placental monocytes and macrophages were generally lower in CCR2-/- mice, but this was less consistent in the circulation, lung, and liver. At 7 h post-LPS, myometrial ERK activation was greater and JNK and p65 lower and the mRNA levels of chemokines were higher and of inflammatory cytokines lower in CCR2-/- vs. wt mice. Pup brain and placental inflammation were similar. Using the IP LPS model, we found that all measures of arterial pressure increased in CCR2-/- but declined in wt mice. These data suggest that the CCL2/CCR2 system plays a critical role in the cardiovascular response to LPS and contributes to pup death but does not influence the onset of inflammation-induced PTL.

Journal article

Zöllner J, Howe LG, Edey LF, O'Dea KP, Takata M, Leiper J, Johnson MRet al., 2020, LPS-induced hypotension in pregnancy: the effect of progesterone supplementation, Shock, Vol: 53, Pages: 199-207, ISSN: 1073-2322

Our previous work has shown that pregnancy exacerbates the hypotensive response to both infection and LPS. The high levels of progesterone (P4) associated with pregnancy have been suggested to be responsible for the pregnancy-induced changes in the cardiovascular response to infection. Here, we test the hypothesis that P4 supplementation exacerbates the hypotensive response of the maternal cardiovascular to LPS.Female CD1 mice had radiotelemetry probes implanted to measure haemodynamic function non-invasively and were time-mated. From day 14 of pregnancy, mice received either 10 mg of P4 or vehicle alone per day and on day 16, intraperitoneal LPS (10 μg of serotype 0111:B4) was injected. In two identically treated cohorts of mice, tissue and serum (for RNA, protein studies) were collected at 6 and 12 hours.Administration of LPS resulted in a fall in blood pressure in vehicle treated, but not P4 supplemented mice. This occurred with similar changes in the circulating levels of cytokines, vasoactive factors and in both circulating and tissue inflammatory cell numbers, but with reduced left ventricular expression of cytokines in P4-supplemented mice. However, left ventricular expression of markers of cardiac dysfunction and apoptosis were similar.This study demonstrates that P4 supplementation prevented LPS-induced hypotension in pregnant mice in association with reduced myocardial inflammatory cytokine gene expression. These observations suggest that rather than being detrimental, P4 supplementation has a protective effect on the maternal cardiovascular response to sepsis.

Journal article

O'Dea K, Tan YY, Shah S, Patel B, Tatham K, Wilson M, Soni S, Takata Met al., 2020, Monocytes mediate homing of circulating microvesicles to the pulmonaryvasculature during low-grade systemic inflammation, Journal of Extracellular Vesicles, Vol: 9, Pages: 1-16, ISSN: 2001-3078

Microvesicles (MVs), a plasma membrane-derived subclass of extracellular vesicles, are produced and released into the circulation during systemic inflammation, yet little is known of cell/tissue-specific uptake of MVs under these conditions. We hypothesized that monocytes contribute to uptake of circulating MVs and that their increased margination to the pulmonary circulation and functional priming during systemic inflammation produces substantive changes to the systemic MV homing profile. Cellular uptake of i.v.-injected, fluorescently labelled MVs (J774.1 macrophage-derived) in vivo was quantified by flow cytometry in vascular cell populations of the lungs, liver and spleen of C57BL6 mice. Under normal conditions, both Ly6Chigh and Ly6Clow monocytes contributed to MV uptake but liver Kupffer cells were the dominant target cell population. Following induction of sub-clinical endotoxemia with low-dose i.v. LPS, MV uptake by lung-marginated Ly6Chigh monocytes increased markedly, both at the individual cell level (~2.5-fold) and through substantive expansion of their numbers (~8-fold), whereas uptake by splenic macrophages was unchanged and uptake by Kupffer cells actually decreased (~50%). Further analysis of MV uptake within the pulmonary vasculature using a combined model approach of in vivo macrophage depletion, ex vivo isolated perfused lungs and in vitro lung perfusate cell-based assays, indicated that Ly6Chigh monocytes possess a high MV uptake capacity (equivalent to Kupffer cells), that is enhanced directly by endotoxemia and ablated in the presence of phosphatidylserine (PS)-enriched liposomes and β3 integrin receptor blocking peptide. Accordingly, i.v.-injected PS-enriched liposomes underwent a redistribution of cellular uptake during endotoxemia similar to MVs, with enhanced uptake by Ly6Chigh monocytes and reduced uptake by Kupffer cells. These findings indicate that monocytes, particularly lung-marginated Ly6Chigh subset monocytes, become a dominant

Journal article

Tan YY, O'Dea KP, Takata M, 2020, Circulating Neutrophil-Derived Microvesicles During Endotoxaemia Induce Pulmonary Vascular Injury, International Conference of the American-Thoracic-Society, Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Oakley C, Koh M, Baldi R, Soni S, O'Dea K, Takata M, Wilson Met al., 2019, Ventilation following established ARDS: a preclinical model framework to improve predictive power, Thorax, Vol: 74, Pages: 1120-1129, ISSN: 1468-3296

Background Despite advances in understanding the pathophysiology of acute respiratory distress syndrome, effective pharmacological interventions have proven elusive. We believe this is a consequence of existing preclinical models being designed primarily to explore biological pathways, rather than predict treatment effects. Here, we describe a mouse model in which both therapeutic intervention and ventilation were superimposed onto existing injury and explored the impact of β-agonist treatment, which is effective in simple models but not clinically.Methods Mice had lung injury induced by intranasal lipopolysaccharide (LPS), which peaked at 48 hours post-LPS based on clinically relevant parameters including hypoxaemia and impaired mechanics. At this peak of injury, mice were treated intratracheally with either terbutaline or tumour necrosis factor (TNF) receptor 1-targeting domain antibody, and ventilated with moderate tidal volume (20 mL/kg) to induce secondary ventilator-induced lung injury (VILI).Results Ventilation of LPS-injured mice at 20 mL/kg exacerbated injury compared with low tidal volume (8 mL/kg). While terbutaline attenuated VILI within non-LPS-treated animals, it was ineffective to reduce VILI in pre-injured mice, mimicking its lack of clinical efficacy. In contrast, anti-TNF receptor 1 antibody attenuated secondary VILI within pre-injured lungs, indicating that the model was treatable.Conclusions We propose adoption of a practical framework like that described here to reduce the number of ultimately ineffective drugs reaching clinical trials. Novel targets should be evaluated alongside interventions which have been previously tested clinically, using models that recapitulate the (lack of) clinical efficacy. Within such a framework, outperforming a failed pharmacologic should be a prerequisite for drugs entering trials.

Journal article

Soni S, Tirlapur N, O'Dea KP, Takata M, Wilson MRet al., 2019, Microvesicles as new therapeutic targets for the treatment of the acute respiratory distress syndrome (ARDS), EXPERT OPINION ON THERAPEUTIC TARGETS, Vol: 23, Pages: 931-941, ISSN: 1472-8222

Journal article

Zhao H, Chen Q, Huang H, Suen KC, Alam A, Cui J, Ciechanowicz S, Ning J, Lu K, Takata M, Gu J, Ma Det al., 2019, Osteopontin mediates necroptosis in lung injury after transplantation of ischaemic renal allografts in rats, BRITISH JOURNAL OF ANAESTHESIA, Vol: 123, Pages: 519-530, ISSN: 0007-0912

Journal article

Soni S, O'Dea K, Tan YY, Cho K, Abe E, Romano R, Cui J, Ma D, Sarathchandra P, Wilson MR, Takata Met al., 2019, ATP redirects cytokine trafficking and promotes novel membrane TNF signalling via microvesicles, FASEB Journal, ISSN: 0892-6638

Cellular stress or injury induces release of endogenous danger signals such as ATP, which plays a central role in activating immune cells. ATP is essential for the release of nonclassically secreted cytokines such as IL-1β but, paradoxically, has been reported to inhibit the release of classically secreted cytokines such as TNF. Here, we reveal that ATP does switch off soluble TNF (17 kDa) release from LPS-treated macrophages, but rather than inhibiting the entire TNF secretion, ATP packages membrane TNF (26 kDa) within microvesicles (MVs). Secretion of membrane TNF within MVs bypasses the conventional endoplasmic reticulum– and Golgi transport–dependent pathway and is mediated by acid sphingomyelinase. These membrane TNF–carrying MVs are biologically more potent than soluble TNF in vivo, producing significant lung inflammation in mice. Thus, ATP critically alters TNF trafficking and secretion from macrophages, inducing novel unconventional membrane TNF signaling via MVs without direct cell-to-cell contact. These data have crucial implications for this key cytokine, particularly when therapeutically targeting TNF in acute inflammatory diseases.—Soni, S., O’Dea, K. P., Tan, Y. Y., Cho, K., Abe, E., Romano, R., Cui, J., Ma, D., Sarathchandra, P., Wilson, M. R., Takata, M. ATP redirects cytokine trafficking and promotes novel membrane TNF signaling via microvesicles.

Journal article

Wilson M, Takata M, 2019, Mechanical Ventilation in Mice: Does Longer Equal Better?, AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, Vol: 60, Pages: 137-138, ISSN: 1044-1549

Journal article

Koh MW, Takata M, Wilson MR, 2019, Cyclophilin A as a Novel Mediator in Acute Lung Injury, International Conference of the American-Thoracic-Society, Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Matsumoto S, Iki Y, Abe M, O'Dea KP, Shigemitsu H, Takata M, Wakabayashi Ket al., 2019, Neutrophil-Derived Microvesicles as a Novel Biomarker in Hyperoxic Bronchopulmonary Dysplasia in Mice, International Conference of the American-Thoracic-Society, Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Tan YY, O'Dea KP, Soo AP, Takata Met al., 2019, Investigation into the Roles of Circulating Microvesicles Within the Pulmonary Vasculature Using Ex Vivo Isolated Perfused Lung, International Conference of the American-Thoracic-Society, Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Antcliffe D, Wolfer A, O'Dea K, Takata M, Holmes E, Gordon ACet al., 2018, Profiling inflammatory markers in patients with pneumonia on intensive care, Scientific Reports, Vol: 8, ISSN: 2045-2322

Clinical investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for a panel of inflammatory mediators to aid in the diagnosis. Forty-four ventilated patients, 17 with pneumonia and 27 with brain injuries, eight of whom developed VAP, were recruited. 51 inflammatory mediators, including cytokines and oxylipins, were measured in patients’ serum using flow cytometry and mass spectrometry. The mediators could separate patients admitted to ICU with pneumonia compared to brain injury with an area under the receiver operating characteristic curve (AUROC) 0.75 (0.61–0.90). Changes in inflammatory mediators were similar in both groups over the course of ICU stay with 5,6-dihydroxyeicosatrienoic and 8,9-dihydroxyeicosatrienoic acids increasing over time and interleukin-6 decreasing. However, brain injured patients who developed VAP maintained inflammatory profiles similar to those at admission. A multivariate model containing 5,6-dihydroxyeicosatrienoic acid, 8,9-dihydroxyeicosatrienoic acid, intercellular adhesion molecule-1, interleukin-6, and interleukin-8, could differentiate patients with VAP from brain injured patients without infection (AUROC 0.94 (0.80–1.00)). The use of a selected group of markers showed promise to aid the diagnosis of VAP especially when combined with clinical data.

Journal article

Du W, Takata M, Wilson MR, 2018, Activation of lung-marginated monocytes in initiating ventilator-induced extra-pulmonary inflammation, British-Journal-of-Anaesthesia (BJA) Research Forum, Publisher: ELSEVIER SCI LTD, Pages: E25-E26, ISSN: 0007-0912

Conference paper

Tatham KC, O'Dea KP, Romano R, Donaldson HE, Wakabayashi K, Patel BV, Thakuria L, Simon AR, Sarathchandra P, POPSTAR Investigators, Marczin N, Takata Met al., 2018, Intravascular donor monocytes play a central role in lung transplant ischaemia-reperfusion injury, Thorax, Vol: 73, Pages: 350-360, ISSN: 1468-3296

Rationale Primary graft dysfunction in lung transplant recipients derives from the initial, largely leukocyte-dependent, ischaemia-reperfusion injury. Intravascular lung-marginated monocytes have been shown to play key roles in experimental acute lung injury, but their contribution to lung ischaemia-reperfusion injury post transplantation is unknown.Objective To define the role of donor intravascular monocytes in lung transplant-related acute lung injury and primary graft dysfunction.Methods Isolated perfused C57BL/6 murine lungs were subjected to warm ischaemia (2 hours) and reperfusion (2 hours) under normoxic conditions. Monocyte retention, activation phenotype and the effects of their depletion by intravenous clodronate-liposome treatment on lung inflammation and injury were determined. In human donor lung transplant samples, the presence and activation phenotype of monocytic cells (low side scatter, 27E10+, CD14+, HLA-DR+, CCR2+) were evaluated by flow cytometry and compared with post-implantation lung function.Results In mouse lungs following ischaemia-reperfusion, substantial numbers of lung-marginated monocytes remained within the pulmonary microvasculature, with reduced L-selectin and increased CD86 expression indicating their activation. Monocyte depletion resulted in reductions in lung wet:dry ratios, bronchoalveolar lavage fluid protein, and perfusate levels of RAGE, MIP-2 and KC, while monocyte repletion resulted in a partial restoration of the injury. In human lungs, correlations were observed between pre-implantation donor monocyte numbers/their CD86 and TREM-1 expression and post-implantation lung dysfunction at 48 and 72 hours.Conclusions These results indicate that lung-marginated intravascular monocytes are retained as a ‘passenger’ leukocyte population during lung transplantation, and play a key role in the development of transplant-associated ischaemia-reperfusion injury.

Journal article

Nakamura H, Wilson MR, Yao K, Mumby S, Adcock IM, Takata M, Patel BVet al., 2018, Modulation Of Mechanical Ventilation-Induced Alveolar Epithelial Cell Death Signaling By Underlying Lung Inflammation, American Thoracic Society 2018, Publisher: American Thoracic Society

Conference paper

Soni S, Wilson MR, Dea KPO, Tan YY, Abe E, Takata Met al., 2018, Microvesicles Mediate Long-Range Membrane TNF Signalling, Inducing Inflammatory Changes Consistent with Acute Lung Injury, International Conference of the American-Thoracic-Society, Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Edey LF, Georgiou H, O'Dea KP, Mesiano S, Herbert BR, Lei K, Hua R, Markovic D, Waddington SN, MacIntyre D, Bennett P, Takata M, Johnson MRet al., 2017, Progesterone, the maternal immune system and the onset of parturition in the mouse, Biology of Reproduction, Vol: 98, Pages: 376-395, ISSN: 1529-7268

The role of progesterone (P4) in the regulation of the local (uterine) and systemic innate immune system, myometrial expression of connexin 43 (Cx-43) and cyclooxygenase 2 (COX-2) and the onset of parturition was examined in: 1) naïve mice delivering at term; 2) E16 mice treated with RU486 (P4-antagonist) to induce preterm parturition; and 3) in mice treated with P4 to prevent term parturition.In naïve mice, myometrial neutrophil and monocyte numbers peaked at E18 and declined with the onset of parturition. In contrast, circulating monocytes did not change and although neutrophils were increased with pregnancy, they did not change across gestation. The myometrial mRNA and protein levels of most chemokines/cytokines, Cx-43 and COX-2 increased with, but not before, parturition.With RU486-induced parturition, myometrial and systemic neutrophil numbers increased before and myometrial monocyte numbers increased with parturition only. Myometrial chemokine/cytokine mRNA abundance increased with parturition, but protein levels peaked earlier at between 4.5 and 9h post RU486. Cx-43, but not COX-2, mRNA expression and protein levels increased prior to the onset of parturition.In mice treated with P4, the gestation-linked increase in myometrial monocyte, but not neutrophil, numbers was prevented and expression of Cx-43 and COX-2 was reduced. On E20 of P4 supplementation, myometrial chemokine/cytokine and leukocyte numbers, but not Cx-43 and COX-2 expression, increased.These data show that during pregnancy P4 controls myometrial monocyte infiltration, cytokine and prolabour factor synthesis via mRNA dependent and independent mechanisms and, with prolonged P4 supplementation, P4 action is repressed resulting in increased myometrial inflammation.

Journal article

Wilson MR, Petrie JE, Shaw MW, Hu C, Oakley CM, Woods SJ, Patel BV, O'Dea KP, Takata Met al., 2017, High fat feeding protects mice from ventilator-induced lung injury, via neutrophil-independent mechanisms, Critical Care Medicine, Vol: 45, Pages: e831-e839, ISSN: 1530-0293

Objective: Obesity has a complex impact on acute respiratory distress syndrome patients, being associated with increased likelihood of developing the syndrome but reduced likelihood of dying. We propose that such observations are potentially explained by a model in which obesity influences the iatrogenic injury that occurs subsequent to intensive care admission. This study therefore investigated whether fat feeding protected mice from ventilator-induced lung injury.Design: In vivo study.Setting: University research laboratory.Subjects: Wild-type C57Bl/6 mice or tumor necrosis factor receptor 2 knockout mice, either fed a high-fat diet for 12–14 weeks, or age-matched lean controls.Interventions: Anesthetized mice were ventilated with injurious high tidal volume ventilation for periods up to 180 minutes.Measurements and Main Results: Fat-fed mice showed clear attenuation of ventilator-induced lung injury in terms of respiratory mechanics, blood gases, and pulmonary edema. Leukocyte recruitment and activation within the lungs were not significantly attenuated nor were a host of circulating or intra-alveolar inflammatory cytokines. However, intra-alveolar matrix metalloproteinase activity and levels of the matrix metalloproteinase cleavage product soluble receptor for advanced glycation end products were significantly attenuated in fat-fed mice. This was associated with reduced stretch-induced CD147 expression on lung epithelial cells.Conclusions: Consumption of a high-fat diet protects mice from ventilator-induced lung injury in a manner independent of neutrophil recruitment, which we postulate instead arises through blunted up-regulation of CD147 expression and subsequent activation of intra-alveolar matrix metalloproteinases. These findings may open avenues for therapeutic manipulation in acute respiratory distress syndrome and could have implications for understanding the pathogenesis of lung disease in obese patients.

Journal article

Zöllner J, Howe LG, Edey LF, O'Dea KP, Takata M, Gordon F, Leiper J, Johnson MRet al., 2017, The response of the innate immune and cardiovascular systems to LPS in pregnant and nonpregnant mice., Biology of Reproduction, Vol: 97, Pages: 258-272, ISSN: 1529-7268

Sepsis is the leading cause of direct maternal mortality, but there are no data directly comparing the response to sepsis in pregnant and nonpregnant (NP) individuals. This study uses a mouse model of sepsis to test the hypothesis that the cardiovascular response to sepsis is more marked during pregnancy. Female CD1 mice had radiotelemetry probes implanted and were time mated. NP and day 16 pregnant CD-1 mice received intraperitoneal lipopolysaccharide (LPS; 10 μg, serotype 0111: B4). In a separate study, tissue and serum (for RNA, protein and flow cytometry studies), aorta and uterine vessels (for wire myography) were collected after LPS or vehicle control administration. Administration of LPS resulted in a greater fall in blood pressure in pregnant mice compared to NP mice. This occurred with similar changes in the circulating levels of cytokines, vasoactive factors, and circulating leukocytes, but with a greater monocyte and lesser neutrophil margination in the lungs of pregnant mice. Baseline markers of cardiac dysfunction and apoptosis as well as cytokine expression were higher in pregnant mice, but the response to LPS was similar in both groups as was the ex vivo assessment of vascular function. In pregnant mice, nonfatal sepsis is associated with a more marked hypotensive response but not a greater immune response. We conclude that endotoxemia induces a more marked hypotensive response in pregnant compared to NP mice. These changes were not associated with a more marked systemic inflammatory response in pregnant mice, although monocyte lung margination was greater. The more marked hypotensive response to LPS may explain the greater vulnerability to some infections exhibited by pregnant women.

Journal article

Oakley CM, Wilson M, O'Dea K, Cordy J, Takata Met al., 2017, Tnfr1 Inhibition Mitigates Susceptibility To Ventilator-Induced Lung Injury In Mice With Established Ards, International Conference of the American-Thoracic-Society (ATS), Publisher: American Thoracic Society, ISSN: 1073-449X

Conference paper

Tirlapur N, O'Dea K, Soni S, Davies R, Sooranna S, Johnson M, Wilson M, Takata Met al., 2017, Pathological Stretch Of Endothelial Cells Activates Marginated Monocytes To Release Microvesicles In An In Vitro Model Of Ventilator-Induced Lung Injury, International Conference of the American-Thoracic-Society (ATS), Publisher: AMER THORACIC SOC, ISSN: 1073-449X

Conference paper

Tan YY, O'Dea KP, Soni S, Shah S, Patel BV, Takata Met al., 2017, Enhanced Recognition and Internalisation of Microvesicles by Lung-Marginated, Ly-6C(high) Monocytes During Endotoxaemia, Annual Meeting of the American-Society-for-Pharmacology-and-Experimental-Therapeutics (ASPET) at Experimental Biology Meeting, Publisher: FEDERATION AMER SOC EXP BIOL, ISSN: 0892-6638

Conference paper

Davies R, O'Dea KP, Soni S, Ward JK, O'Callaghan DJP, Takata M, Gordon ACet al., 2017, P362: Vasopressin alone and with noradrenaline attenuates TNF-α production in an in-vitro model of monocyte priming and deactivation, 37th International Symposium on Intensive Care and Emergency Medicine, Publisher: BioMed Central, ISSN: 1364-8535

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00170080&limit=30&person=true