Imperial College London

Prof. J. P. Martin Trusler

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Thermophysics
 
 
 
//

Contact

 

+44 (0)20 7594 5592m.trusler Website

 
 
//

Assistant

 

Miss Jessica Baldock +44 (0)20 7594 5699

 
//

Location

 

409ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

260 results found

Smit B, Styring P, Wilson G, Rochelle G, Donat F, Yao J, Trusler M, Adjiman C, Lyth S, Lee J-SM, Hills T, Brandl P, Gazzani M, Cuellar-Franca R, Fennell P, Sutter D, Bui M, Scholes C, Dowson G, Gibbins J, Joss L, Maitland G, Brandani S, Garcia-Gutierrez P, Zhang Y, Muller C, Jackson G, Ocone R, Joos L, Bell R, Graham Ret al., 2016, Modelling - from molecules to megascale: general discussion, Faraday Discussions, Vol: 192, Pages: 493-509, ISSN: 1359-6640

Journal article

Hu R, Crawshaw JP, Trusler JPM, Boek ESet al., 2016, Rheology and phase behavior of carbon dioxide and crude oil mixtures, Energy & Fuels, Vol: 31, Pages: 5776-5784, ISSN: 0887-0624

The rheology of Zuata heavy crude oil, saturated with carbon dioxide, was studied at a temperature of 50 °C and pressures up to 220 bar. Observations of phase behavior were also reported and used to interpret the rheological data. The crude oil is very viscous and non-Newtonian at ambient pressure, but when brought into equilibrium with CO2, the non-Newtonian behavior was weakened and eventually disappeared at high CO2 pressures. When diluted with 10 and 30 wt % toluene, the diluted crude oils and their mixtures with CO2 behaved as Newtonian fluids. The CO2-saturated mixture of the crude oil samples showed an exponential decrease in viscosity with increasing CO2 pressure but an increase in viscosity at higher pressures. During observation through a view cell, the CO2 dissolution caused a swelling effect on the original crude oil. When saturated with CO2, the swelling effect also occurred on the 10 wt % diluted crude oil but the volume of the oil-rich phase was decreased at higher pressures. However, for the 30 wt % diluted crude oil, a second liquid phase was observed on top of the oil-rich phase, at pressures higher than the CO2 critical point. The mixture viscosity was inversely proportional to the CO2 solubility.

Journal article

Efika EC, Torin Ollarves GA, Al Ghafri SZS, Trusler JPMet al., 2016, Experimental and Modelling Study of the Phase Equilibria of (CO2 + Methylcylohexane + N2) at High Pressures and Temperatures, American Institute of Chemical Engineers (AICHe) Annual Meeting

Conference paper

Peng C, Anabaraonye BU, Crawshaw JP, Maitland GC, Trusler JPet al., 2016, Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions., Faraday Discussions, Vol: 192, Pages: 545-560, ISSN: 1364-5498

We report experimental measurements of the dissolution rate of several carbonate minerals in CO2-saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO2-saturated NaCl brines with molalities of up to 5 mol kg(-1). The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO2-saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO2-saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO2-injection into carbonate-mineral saline aquifers.

Journal article

Efika EC, Hoballah R, Li X, May EF, Nania M, Sanchez-Vicente Y, Trusler JPMet al., 2016, Saturated phase densities of (CO2 + H2O) at temperatures from (293 to 450) K and pressures up to 64 MPa, Journal of Chemical Thermodynamics, Vol: 93, Pages: 347-359, ISSN: 1096-3626

An apparatus consisting of an equilibrium cell connected to two vibrating tube densimeters and two syringe pumps was used to measure the saturated phase densities of (CO2 + H2O) at temperatures from (293 to 450) K and pressures up to 64 MPa, with estimated average standard uncertainties of 1.5 kg · m−3 for the CO2-rich phase and 1.0 kg · m−3 for the aqueous phase. The densimeters were housed in the same thermostat as the equilibrium cell and were calibrated in situ using pure water, CO2 and helium. Following mixing, samples of each saturated phase were displaced sequentially at constant pressure from the equilibrium cell into the vibrating tube densimeters connected to the top (CO2-rich phase) and bottom (aqueous phase) of the cell. The aqueous phase densities are predicted to within 3 kg · m−3 using empirical models for the phase compositions and partial molar volumes of each component. However, a recently developed multi-parameter equation of state (EOS) for this binary mixture, Gernert and Span [32], was found to under predict the measured aqueous phase density by up to 13 kg · m−3. The density of the CO2-rich phase was always within about 8 kg · m−3 of the density for pure CO2 at the same pressure and temperature; the differences were most positive near the critical density, and became negative at temperatures above about 373 K and pressures below about 10 MPa. For this phase, the multi-parameter EOS of Gernert and Span describes the measured densities to within 5 kg · m−3, whereas the computationally-efficient cubic EOS model of Spycher and Pruess (2010), commonly used in simulations of subsurface CO2 sequestration, deviates from the experimental data by a maximum of about 8 kg · m−3.

Journal article

Chow YTF, Eriksen DK, Galindo A, Haslam AJ, Jackson G, Maitland GC, Trusler JPMet al., 2016, Interfacial tensions of systems comprising water, carbon dioxide and diluent gases at high pressures: experimental measurements and modelling with SAFT-VR Mie and square-gradient theory, Fluid Phase Equilibria, Vol: 407, Pages: 159-176, ISSN: 0378-3812

Experimental interfacial tensions of the systems (H<inf>2</inf>O+CO<inf>2</inf>), (H<inf>2</inf>O+N<inf>2</inf>), (H<inf>2</inf>O+Ar), (H<inf>2</inf>O+CO<inf>2</inf> +N<inf>2</inf>) and (H<inf>2</inf>O+CO<inf>2</inf> +Ar) are compared with calculations based on the statistical associating fluid theory for variable range potentials of the Mie form (SAFT-VR Mie) in combination with the square-gradient theory (SGT). Comparisons are made at temperatures from (298 to 473)K and at pressures up to 60MPa. Experimental data for the systems (H<inf>2</inf>O+CO<inf>2</inf>), (H<inf>2</inf>O+N<inf>2</inf>) and (H<inf>2</inf>O+CO<inf>2</inf> +N<inf>2</inf>) are taken from the literature. For the (H<inf>2</inf>O+Ar) and (H<inf>2</inf>O+CO<inf>2</inf> +Ar) systems, we report new experimental interfacial-tension data at temperatures of (298.15-473.15)K and pressures from (2 to 50)MPa, measured by the pendant-drop method. The expanded uncertainties at 95% confidence are 0.05K for temperature, 70kPa for pressure, 0.016× γ for interfacial tension in the binary (Ar+H<inf>2</inf>O) system and 0.018× γ for interfacial tension in the ternary (CO<inf>2</inf> +Ar+H<inf>2</inf>O) system.The parameters in the SAFT-VR Mie equation of state are estimated entirely from phase-equilibrium data for the pure components and binary mixtures. For pure water, the SGT influence parameter is determined from vapour-liquid surface-tension data, as is common practice. Since the other components are supercritical over most or the entire temperature range under consideration, their pure-component influence parameters are regressed by comparison with the binary interfacial-tension data. A geometric-mean combining rule

Journal article

Schmidt KAG, Pagnutti D, Curran MD, Singh A, Trusler JPM, Maitland GC, McBride-Wright Met al., 2016, Correction to "New experimental data and reference models for the viscosity and density of squalane", Journal of Chemical and Engineering Data, Vol: 61, Pages: 698-698, ISSN: 1520-5134

Empirical models for the density and the viscosity of squalane (C30H62; 2,6,10,15,19,23-hexamethyltetracosane) have been developed based on an exhaustive review of the data available in the literature and new experimental density and viscosity measurements carried out as a part of this work. The literature review shows there is a substantial lack of density and viscosity data at high temperature (373 to 473) K and high pressure conditions (pressures up to 200 MPa). These gaps were addressed with new experimental measurements carried out at temperatures of (338 to 473) K and at pressures of (1 to 202.1) MPa. The new data were utilized in the model development to improve the density and viscosity calculation of squalane at all conditions including high temperatures and high pressures. The model presented in this work reproduces the best squalane density and viscosity data available based on a new combined outlier and regression algorithm. The combination of the empirical models and the regression approach resulted in models which could reproduce the experimental density data with average absolute percent deviation of 0.04 %, bias of 0.000 %, standard deviation of 0.05 %, and maximum absolute percent deviation of 0.14 % and reproduce the experimental viscosity data with average absolute percent deviation of 1.4 %, bias of 0.02 %, standard deviation of 1.8 %, and maximum absolute percent deviation of 4.9 % over a wide range of temperatures and pressures. On the basis of the data set used in the model regression (without outliers), the density model is limited to the pressure and temperature ranges of (0.1 to 202.1) MPa and (273 to 525) K, whereas the viscosity model is limited to the pressure and temperature ranges of (0.1 to 467.0) MPa and (273 to 473) K. These models can be used to calibrate laboratory densitometers and viscometers at relevant high-temperature, high-pressure conditions.

Journal article

Al Ghafri SZS, Forte E, Galindo A, Maitland GC, Trusler JPMet al., 2015, Experimental and Modeling Study of the Phase Behavior of (Heptane plus Carbon Dioxide plus Water) Mixtures, Journal of Chemical and Engineering Data, Vol: 60, Pages: 3670-3681, ISSN: 1520-5134

We report experimental measurements ofthree-phase equilibria in the system (heptane + carbon dioxide+ water) obtained with a quasi-static analytical apparatus withcompositional analysis by means of gas chromatography. Theapparatus was calibrated by an absolute area method and thewhole measurement system was validated by means ofcomparison with the published literature data of the system(heptane + carbon dioxide). The compositions of the threephases coexisting in equilibrium were measured along fiveisotherms at temperatures from (323.15 to 413.15) K withpressures ranging from approximately 2 MPa to the uppercritical end point pressure at which the two nonaqueousphases became critical. The experimental results have been compared with the predictions of the statistical associating fluidtheory for potentials of variable range. The unlike binary interaction parameters used here are consistent with a previous study fora ternary mixture of a different n-alkane, while the alkane−water binary interaction parameter is found to be transferable and thealkane−carbon dioxide binary interaction parameter is predicted using a modified Hudson-McCoubrey combining rule.Generally, good agreement between experiment and theory was found

Journal article

Souza LFS, Al Ghafri SZS, Trusler JPM, 2015, Phase behaviour studies of the system (CH4+ CO2) and (CH4 + H2S + CO2) at temperatures between (218.15 and 303.15) K, AIChE Annual Meeting 2015, Pages: 1025-1034

Conference paper

Trusler JPM, 2015, Introduction to the Special Issue on carbon storage, Journal of Chemical Thermodynamics, Vol: 93, Pages: 273-273, ISSN: 1096-3626

Journal article

Machin G, Fischer J, Moldover M, Saunders J, Trusler M, White Ret al., 2015, Towards implementing the new kelvin, MEASUREMENT, Vol: 74, Pages: 113-115, ISSN: 0263-2241

Journal article

Chow YTF, Maitland GC, Trusler JPM, 2015, Interfacial tensions of the (CO2 + N-2 + H2O) system at temperatures of (298 to 448) K and pressures up to 40 MPa, Journal of Chemical Thermodynamics, Vol: 93, Pages: 392-403, ISSN: 1096-3626

Interfacial tension measurements of the (CO2 + N2 + H2O) and (N2 + H2O) systems are reported at pressures of (2 to 40) MPa, and temperatures of (298.15 to 448.15) K. The pendant drop method was used in which it is necessary to know the density difference between the two phases. To permit calculation of this difference, the compositions of the coexisting phases were first computed from a combination of the Peng–Robinson equation of state (applied to the non-aqueous phase) and the NRTL model (applied to the aqueous phase). Densities of the non-aqueous phase were computed from the GERG-2008 equation of state, while those of the aqueous phase were calculated knowing the partial molar volumes of the solutes. The expanded uncertainties at 95% confidence are 0.05 K for temperature, 0.07 MPa for pressure, 0.019γ for interfacial tension in the binary (N2 + H2O) system; and 0.032γ for interfacial tension in the ternary (CO2 + N2 + H2O) system. The interfacial tensions in both systems were found to decrease with both increasing pressure and increasing temperature. An empirical correlation has been developed for the interfacial tension of the (N2 + H2O) system in the full range of conditions investigated, with an average absolute deviation of 0.20 mN · m−1, and this is used to facilitate a comparison with literature values. Estimates of the interfacial tension for the (CO2 + N2 + H2O) ternary system, by means of empirical combining rules based on the coexisting phase compositions and the interfacial tensions of the binary sub-systems, (N2 + H2O) and (CO2 + H2O), were found to be somewhat inadequate at low temperatures, with an average absolute deviation of 1.9 mN · m−1 for all the conditions investigated. To enable this analysis, selected literature data for the interfacial tensions of the (CO2 + H2O) binary system have been re-analysed, allowing for improved estimates of the density difference between the two phases. The revised resu

Journal article

Zhang J, Fennell PS, Trusler JPM, 2015, Density and Viscosity of Partially Carbonated Aqueous Tertiary Alkanolamine Solutions at Temperatures between (298.15 and 353.15) K, Journal of Chemical and Engineering Data, Vol: 60, Pages: 2392-2399, ISSN: 1520-5134

The density and viscosity of partially carbonatedaqueous solutions of either 2-dimethylaminoethanol or 2-diethylaminoethanolwere measured over a temperature range of (298.15 to353.15) K with alkanolamine mass fractions of 0.15 to 0.45.Correlations were developed to represent the density and viscosityof these solutions as a function of amine concentration, CO2 loading,and temperature. For the density, the correlation represents theexperimental data to within ± 0.2 %, while the viscosity data werecorrelated to within ± 4 %. The data and models reported in thispaper will help facilitate a better understanding of the performance ofthese amines in CO2 capture processes, especially in relation to masstransfer and hydrodynamic calculations.

Journal article

Liu Z, Trusler JPM, Bi Q, 2015, Viscosities of Liquid Cyclohexane and Decane at Temperatures between (303 and 598) K and Pressures up to 4 MPa Measured in a Dual-Capillary Viscometer, Journal of Chemical and Engineering Data, Vol: 60, Pages: 2363-2370, ISSN: 1520-5134

The viscosities of cyclohexane and decane arereported at temperatures between (303.15 and 598.15) K and atpressures of (0.1, 1, 2, 3 and 4) MPa. The experiments were carriedout with a dual-capillary viscometer that measures the ratio of theviscosities at temperature T and pressure p to that at a referencetemperature of 298.15 K and the same pressure. Absolute values ofthe viscosity were then obtained with an expanded relativeuncertainties at 95 % confidence of 3.0 % by combining themeasured ratios with literature values of the viscosity at the referencetemperature.

Journal article

Hu R, Crawshaw JP, Trusler JPM, Boek ESet al., 2015, Rheology of Diluted Heavy Crude Oil Saturated with Carbon Dioxide, Energy & Fuels, Vol: 29, Pages: 2785-2789, ISSN: 0887-0624

Journal article

May EF, Tay WJ, Nania M, Aleji A, Al-Ghafri S, Trusler JPMet al., 2015, Erratum: “Physical apparatus parameters and model for vibrating tube densimeters at pressures to 140 MPa and temperatures to 473 K” [Rev. Sci. Instrum. 85, 095111 (2014)], Review of Scientific Instruments, Vol: 86, ISSN: 1089-7623

Journal article

Schmidt KAG, Pagnutti D, Trusler JPM, 2015, Reply to "comment on 'new experimental data and reference models for the viscosity and density of squalane", Journal of Chemical and Engineering Data, Vol: 60, Pages: 1213-1214, ISSN: 0021-9568

The authors would like to thank Professor Bair for his insightful comments on ultrahigh-pressure viscosities. The viscosity model used by Schmidt et al.1 was a Tait-like2,3 model that has been shown to correlate accurately the viscosity of many fluids in the original investigation’s pressure range (0.1–275.8 MPa (40000 psi)) of interest. The upper pressure is indicative of the high pressures found in the petroleum industry4. However, after discussions with Professor Bair, it became clear a reference model that can accurately model the viscosity of squalane at ultrahigh-pressures is of interest to those working in the area of tribology.

Journal article

Peng C, Crawshaw JP, Maitland GC, Trusler JPMet al., 2015, Kinetics of calcite dissolution in CO2-saturated water at temperatures between (323 and 373) K and pressures up to 13.8 MPa, Chemical Geology, Vol: 403, Pages: 74-85, ISSN: 1872-6836

We report measurements of the calcite dissolution rate in CO2-saturated water at pressures ranging from (6.0 to 13.8) MPa and temperatures from (323 to 373) K. The rate of calcite dissolution in HCl(aq) at temperatures from (298 to 353) K was also measured at ambient pressure with pH between 2.0 and 3.3. A specially-designed batch reactor system, implementing a rotating disc technique, was used to obtain the dissolution rate at the solid/liquid interface of a single crystal, free of mass transfer effects. We used vertical scanning interferometry to examine the texture of the calcite surface produced by the experiment and the results suggested that at far-from-equilibrium conditions, the measured calcite dissolution rate was independent of the initial defect density due to the development of a dynamic dissolution pattern which became steady-state shortly after the onset of dissolution. The results of this study indicate that the calcite dissolution rate under surface-reaction-controlled conditions increases with the increase of temperature from (323 to 373) K and CO2 partial pressure from (6.0 to 13.8) MPa. Fitting the conventional first order transition state kinetic model to the observed rate suggested that, although sufficient to describe calcite dissolution in CO2-free HCl(aq), this model clearly underestimate the calcite dissolution rate in the (CO2 + H2O) system over the range of conditions studied. A kinetic model incorporating both pH and the activity of CO2(aq) has been developed to represent the dissolution rates found in this study. We report correlations for the corresponding reaction rate coefficients based on the Arrhenius equation and compare the apparent activation energies with values from the literature. The results of this study should facilitate more rigorous modelling of mineral dissolution in deep saline aquifers used for CO2 storage.

Journal article

FandiƱo O, Trusler JPM, Vega-Maza D, 2015, Phase behavior of (CO2 + H-2) and (CO2+ N-2) at temperatures between (218.15 and 303.15)K at pressures up to 15 MPa, International Journal of Greenhouse Gas Control, Vol: 36, Pages: 78-92, ISSN: 1750-5836

Vapor–liquid equilibrium data are reported for the binary systems (CO2 + H2) and (CO2 + N2) at temperatures between (218.15 and 303.15) K at pressures ranging from the vapor pressure of CO2 to approximately 15 MPa. These data were measured in a new analytical apparatus which is described in detail. The results are supported by a rigorous assessment of uncertainties and careful validation measurements. The new data help to resolve discrepancies between previous studies, especially for the (CO2 + H2) system. Experimental measurements of the three-phase solid–liquid–vapor locus are also reported for both binary systems.The vapor–liquid equilibrium data are modeled with the Peng–Robinson (PR) equation of state with two binary interaction parameters: one, a linear function of inverse temperature, applied to the unlike term in the PR attractive-energy parameter; and the other, taken to be constant, applied to the unlike term in the PR co-volume parameter. This model is able to fit the experimental data in a satisfactory way except in the critical region. We also report alternative binary parameter sets optimized for improved performance at either temperatures below 243 K or temperatures above 273 K. A simple predictive model for the three-phase locus is also presented and compared with the experimental data.

Journal article

Wakeham W, Trusler JPM, 2015, Anthony Robert Holmes Goodwin (1961-2014) obituary, Journal of Chemical and Engineering Data, Vol: 60, Pages: 215-216, ISSN: 0021-9568

Journal article

Trusler JPM, Marsh KN, Wakeham WA, 2015, In Memoriam: Anthony (Tony) Goodwin, Nineteenth Symposium on Thermophysical Properties

Anthony (Tony) Goodwin was a leading innovator in the field of thermophysics, and widely known as a researcher, author, and journal editor. Following his untimely death in December 2014, at the age of just 53, we review in this paper Tony’s outstanding contributions to the field of thermophysics and recount some of the personal qualities that his many friends and colleagues in the community will cherish.Tony excelled as an experimentalist and devoted much energy to improving a variety of experimental techniques to facilitate measurements of thermophysical properties either under wider ranges of conditions, or with lower uncertainty. In a career spanning academia and industry, he worked on a number of key problems that presented both scientific challenges and opportunities for industrial application. We mention in particular his work on measurements of the speed of sound, relative permittivity, fluid phase behaviour, density and viscosity. In his industrial career, Tony was responsible for the development and testing of sensors for measuring many of these same properties for purposes of downhole fluid analysis in the petroleum industry. He published around 100 articles in the archival scientific journals, edited a number of books, authored or co-authored numerous chapters and was granted a large number of patents. He was also a powerful influence within the Physical Chemistry Division of IUPAC and the International Association of Chemical Thermodynamics. Drawing both on our personal experiences of collaborating with Tony and on his published work, this paper will highlight his lasting scientific achievements.

Conference paper

Cadogan S, Maitland GC, Mistry B, Trusler JPM, Wong Tet al., 2015, Diffusion coefficients of carbon dioxide in liquid hydrocarbons at high pressures: Experiment and modeling, Pages: 144-150

In this work we have: • Obtained new experimental data for CO2 diffusion in normal alkanes from C6 to C16 and in squalane (C30H62) • Developed a universal correlation for the n-alkane systems in terms of temperature, solvent molar volume and carbon number • Squalane data suggests that the correlation should become nonlinear at high densities.

Conference paper

Cadogan S, Maitland GC, Mistry B, Trusler JPM, Wong Tet al., 2015, Diffusion coefficients of carbon dioxide in liquid hydrocarbons at high pressures: Experiment and modeling, Pages: 69-75

Conference paper

Al Ghafri SZ, Efika EC, Trusler JPM, 2015, A new high-pressure high-temperature apparatus for phase behaviour measurements on multicomponent mixtures, Pages: 1012-1014

Conference paper

Schmidt KAG, Pagnutti D, Curran MD, Singh A, Trusler JPM, Maitland GC, McBride-Wright Met al., 2015, New Experimental Data and Reference Models for the Viscosity and Density of Squalane, JOURNAL OF CHEMICAL AND ENGINEERING DATA, Vol: 60, Pages: 137-150, ISSN: 0021-9568

Journal article

McBride-Wright M, Maitland GC, Trusler JPM, 2015, Viscosity and Density of Aqueous Solutions of Carbon Dioxide at Temperatures from (274 to 449) K and at Pressures up to 100 MPa, JOURNAL OF CHEMICAL AND ENGINEERING DATA, Vol: 60, Pages: 171-180, ISSN: 0021-9568

Journal article

Cadogan SP, Hallett JP, Maidand GC, Trusler JPMet al., 2015, Diffusion Coefficients of Carbon Dioxide in Brines Measured Using <SUP>13</SUP>C Pulsed-Field Gradient Nuclear Magnetic Resonance, JOURNAL OF CHEMICAL AND ENGINEERING DATA, Vol: 60, Pages: 181-184, ISSN: 0021-9568

Journal article

Trusler JPM, 2015, Virial Coefficients, VOLUME PROPERTIES: LIQUIDS, SOLUTIONS AND VAPOURS, Editors: Wilhelm, Letcher, Publisher: ROYAL SOC CHEMISTRY, Pages: 152-162, ISBN: 978-1-84973-899-6

Book chapter

Hou S-X, Maitland GC, Trusler JPM, 2014, Phase equilibria of (CO2 + butylbenzene) and (CO2 + butylcyclohexane) at temperatures between (323.15 and 423.15) K and at pressures up to 21 MPa, Fluid Phase Equilibria, Vol: 387, Pages: 111-116, ISSN: 0378-3812

Experimental measurements of the phase equilibria of (CO2 + butylbenzene) and (CO2 + butylcyclohexane) have been made with an analytical apparatus at temperatures of (323.15, 373.15 and 423.15) K at pressures from 2 MPa to the mixture critical pressure. These are the first results to be published for (CO2 + butylcyclohexane), while for (CO2 + butylbenzene) they are the first at pressures above 6 MPa. To model the data, we use the Peng–Robinson equation of state with Wong–Sandler mixing rules incorporating the NRTL equation. The model describes the measured bubble point curves very well at all temperatures, except close to the mixture critical points at high pressures. The dew point curves are described well only at the lowest temperature; otherwise, deviations increase in the approach to the mixture critical point.

Journal article

Lin C-W, Trusler JPM, 2014, Speed of Sound in (Carbon Dioxide plus Propane) and Derived Sound Speed of Pure Carbon Dioxide at Temperatures between (248 and 373) K and at Pressures up to 200 MPa, JOURNAL OF CHEMICAL AND ENGINEERING DATA, Vol: 59, Pages: 4099-4109, ISSN: 0021-9568

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00006001&limit=30&person=true&page=4&respub-action=search.html