Publications
109 results found
Brizzolara S, Mollicone J-P, van Reeuwijk M, et al., 2023, Entrainment at multi-scales in shear-dominated and Rayleigh–Taylor turbulence, European Journal of Mechanics - B/Fluids, Vol: 101, Pages: 294-302, ISSN: 0997-7546
A partially turbulent flow continuously incorporates irrotational fluid into the turbulent region, a phenomenon known as entrainment. Although entrainment locally acts at viscous scales, the thin interface separating the turbulent from the irrotational region is extremely convoluted, and twisted in such a way that renders the global entrainment flux scale-independent. Despite turbulent entrainment being widely recognized as a multi-scale process, the theoretical basis for quantifying the entrainment flux at multi-scales is lacking. In this paper we derive an equation that allows us to quantify the local entrainment velocity at multi-scales. This is done by defining the local entrainment velocity as the propagation speed of an iso-surface of filtered enstrophy relative to the coarse-grained velocity field, and using the filtered enstrophy budget to split the total velocity into its individual components, i.e. viscous, inviscid, baroclinic and sub-filter. The equation is used to investigate the entrainment at multi-scales in simulated turbulent mixing layers, where turbulence is sustained by either a mean shear or an unstable buoyancy gradient (Rayleigh–Taylor turbulence).
Yu T, Suetzl BS, van Reeuwijk M, 2023, Urban neighbourhood classification and multi-scale heterogeneity analysis of Greater London, Environment and Planning B: Urban Analytics and City Science, Vol: 50, Pages: 1534-1558, ISSN: 2399-8083
We study the compositional and configurational heterogeneity of Greater London at the city- and neighbourhood-scale using Geographic Information System (GIS) data. Urban morphometric indicators are calculated including plan-area indices and fractal dimensions of land cover, frontal area index of buildings, evenness, and contagion. To distinguish between city-scale heterogeneity and neighbourhood-scale heterogeneity, the study area of 720 km2 is divided into 1 × 1 km2 neighbourhoods. City-scale heterogeneity is represented by categorisation of the neighbourhoods using a k-means clustering algorithm based on the morphometric indicators. This results in six neighbourhood types ranging from “greenspace” to “central business district”. Neighbourhood-scale heterogeneity is quantified using a hierarchical multi-scale analysis for each neighbourhood type. The analysis reveals the dominant length scales for land-cover and neighbourhood types and the resolutions with the most information gain. We analyse multi-scale anisotropy and show that small-scale features are homogeneous, and that anisotropy is present at larger length scales.
Vouriot CVM, Higton TD, Linden PF, et al., 2023, Uniformly distributed floor sources of buoyancy can give rise to significant spatial inhomogeneities within rooms, Flow: Applications of Fluid Mechanics, Vol: 3, Pages: 1-18, ISSN: 2633-4259
Displacement ventilation, where cool external air enters a room through low-level vents and warmer airleaves through high-level vents, is characterised by vertical gradients in pressure arising from the warmerindoor temperatures. Models usually assume that horizontal variations of temperature difference are smallin comparison and are, therefore, unimportant. Small-scale laboratory experiments and computational fluiddynamics were used to examine these flows, driven by a uniformly heated floor. These experiments andsimulations show that the horizontal variations of temperature difference can be neglected for predictions of the bulk ventilation rate; however, they also evidence that these horizontal variations can be significant andplay a critical role in establishing the pattern of flow within the room — this renders the horizontal position ofthe low- and high-level vents (relative to one another) important. We consider two cases: single-ended (whereinlet and outlet are at the same end of the room) and opposite-ended. In both cases the ventilation flow rateis the same. However, in the opposite-ended case a dead zone is established in the upper part of the roomwhich results in significant horizontal variations. We consider the formation of this dead zone by examiningthe streamline patterns and the age of air within the room. We discuss the implications for occupant exposureto pollutants and airborne disease.Impact Statement:Exposure to indoor air pollution and airborne diseases are major factors in human health and well being.Guidance on appropriate ventilation rates is typically based on bulk ventilation rates, either in terms of theamount supplied per individual or as air exchange rates for a space. Such bulk measures assume homogeneousconditions within a space while, in practice, there are often significant spatial variations in properties. Thispaper shows that in displacement ventilation, where it is commonly assumed that horizontal variations arenegligible
Puchol-Salort P, Boskovic S, Dobson B, et al., 2023, Integrated Urban Planning Decision-Making Process Towards Water Neutral Solutions
<jats:p>Urban water security levels will be threatened during the next few years due to new development pressures combined with the climate emergency and increasing population growth in cities. In the UK, London&#8217;s planning authorities have a target of more than half a million households for the next 10 years. This new housing will increase the current impacts on urban consumer demand, flood risk, and river water quality indicators. In our previous work, we developed a new concept for urban Water Neutrality (WN) inside an integrated urban planning sustainability framework called CityPlan to deal with water stress and urban complexity issues. This framework integrates the UK&#8217;s planning application process with systemic design solutions and evaluation, all being spatially represented in a GIS platform. With the new digital era, there is a constantly increasing number of spatial datasets that are openly available from different sources, but most of them are disaggregated and difficult to understand by key urban stakeholders such as Local Planning Authorities, housing developers, and water companies. Moreover, there are several Multi-Criteria Decision Support Tools (MCDST) that address water management challenges in the literature; but there is still little evidence of one that evaluates the impacts and opportunities to allocate water neutral urban developments.In this work, we expand the CityPlan framework and present an innovative fully data-driven approach to test WN indicators at different urban scales. WaNetDST integrates GIS spatial data with a series of rules for development impact and offset opportunity based on the current properties of the urban land. This integration is linked to a new scoring system from expert advice that maps strategic areas for water neutral interventions and links the most impactful zones with others more prone to be intervened. The tool connects different urban scales with a series of case study areas: f
Quilelli Correa Rocha Ribeiro R, Gryspeerdt E, Van Reeuwijk M, 2023, Retrieving cloud sensitivity to aerosol using ship emissions
<jats:p>Aerosol-cloud interactions are one of the key uncertainties in understanding future climate change. A commonly used method for constraining these interactions is using ship tracks. Aerosol-containing plumes from ships can develop into linearly shaped clouds identifiable in satellite images, isolating the aerosol impact on clouds. Previous studies have shown that ship tracks form more commonly in clean conditions, but even accounting for this, many ships that might be expected to form ship tracks do not. This leads to uncertainties in aerosol-cloud interactions and their climate impact. &#160;Ship track formation depends on the aerosol-containing plumes from the ship being sufficiently concentrated upon reaching the cloud. The cloud must also be sensitive to aerosol. In focus are updraft-limited clouds: smaller updrafts promote slower cooling as a cloud parcel rises, higher critical supersaturation values and lower aerosol activation fractions. It is not clear which of these are more important, but it is vital to understand them if we are using ship tracks to retrieve cloud sensitivity to aerosol.&#160;&#160; &#160;We develop a plume-parcel model to address these issues to estimate cloud droplet enhancements in ship tracks. Ship aerosol concentrations at the cloud height were modelled as plumes, simulating the shorter timescales of injection. Droplet number concentration enhancements were estimated using K&#246;hler theory for over one hundred thousand ships off the coast of California. &#160;Using a constant updraft, the model was able to achieve reasonable enhancements (r2 ranging between (0.32, 0.4)). These enhancements were shown to be significantly sensitive to the choice of the updraft. In order to examine the hypothetical updraft values required for activation, an optimisation algorithm was developed to fit updrafts to cloud enhancement observations; a 1-1 correlation was achieved between observed a
Nair V, Devenish B, van Reeuwijk M, 2023, Effect of Gravity on Particle Clustering and Collisions in Decaying Turbulence, Flow, Turbulence and Combustion, Vol: 110, Pages: 889-915, ISSN: 1386-6184
The preferential concentration of sedimenting particles in decaying homogeneous isotropic turbulence is investigated using radial distribution functions (RDF). Direct numerical simulations of polydisperse distributions of non-sedimenting and sedimenting particles of radii 10–55 μm are performed. We see a power law behaviour for the RDF in decaying turbulence and the power-law relation derived by Chun et al. (J Fluid Mech 536:219–251, 2005) for the RDF of non-sedimenting particles holds for sedimenting particles as well. Empirical formulas are generated for the power-law coefficients which are shown to be functions of the Stokes number and the Taylor Reynolds number for sedimenting particles. An in-depth analysis of the turbulent kinematic collision kernel for both non-sedimenting and sedimenting collision kernels confirms that gravity enhances the collision kernel for unequal sized particles and decreases for same-sized particles. Models are created for both monodisperse and bidisperse RDFs which are combined with existing models for the conditional radial relative velocities of colliding particles to predict kinematic collision kernels for both non-sedimenting and sedimenting particles. The effect on the collision kernel due to turbulence is also explored and enhancement of factors of up to three is observed with respect to the gravitational collision kernel.
Huang J, Burridge HC, van Reeuwijk M, 2023, The internal structure of forced fountains, Journal of Fluid Mechanics, Vol: 961, Pages: 1-29, ISSN: 0022-1120
We study the mixing processes inside a forced fountain using data from directnumerical simulation. The outer boundary of the fountain with the ambient is aturbulent/non-turbulent interface. Inside the fountain, two internalboundaries, both turbulent/turbulent interfaces, are identified: 1) theclassical boundary between upflow and downflow which is composed of the loci ofpoints of zero mean vertical velocity; and 2) the streamline that separates themean flow emitted by the source from the entrained fluid from the ambient (theseparatrix). We show that entrainment due to turbulent fluxes across theinternal boundary is at least as important as that by the mean flow. However,entrainment by the turbulence behaves substantively differently from that bythe mean flow and cannot be modelled using the same assumptions. This presentsa challenge for existing models of turbulent fountains and other environmentalflows that evolve inside turbulent environments.
Arshad M, Cheng S, van Reeuwijk M, et al., 2023, Modification of the swirling well cell culture model to alter shear stress metrics, BIOTECHNOLOGY AND BIOENGINEERING, ISSN: 0006-3592
Li T, Fellini S, van Reeuwijk M, 2023, Urban air quality: What is the optimal place to reduce transport emissions?, Atmospheric Environment, Vol: 292, Pages: 1-12, ISSN: 1352-2310
We develop a linear model based on a complex network approach that predicts the effect of emission changes on air pollution exposure in urban street networks including NO–NO2–O3-chemisty. The operational air quality model SIRANE is used to create a weighted adjacency matrix A describing the relation between emissions of a passive scalar inside streets and the resulting concentrations in the street network. A case study in South Kensington (London) is used, and the ad jacency matrix A0 is determined for one wind speed and eight different wind directions. The physics of the underlying problem is used to infer A for different wind speeds. Good agreement between SIRANE predictions and the model is observed for all but the lowest wind speed, despite non-linearities in SIRANE’s model formulation. An indicator for exposure in the street is developed, and it is shown that the out-degree of the exposure matrix E represents the effect of a change in emissions on the exposure reduction in all streets in the network. The approach is then extended to NO–NO2–O3-chemisty, which introduces a non-linearity. It is shown that a linearised model agrees well with the fully nonlinear SIRANE predictions. The model shows that roads with large height-to-width ratios are the first in which emissions should be reduced in order to maximise exposure reduction.
Grylls T, van Reeuwijk M, 2022, How trees affect urban air quality: It depends on the source, Atmospheric Environment, Vol: 290, Pages: 1-14, ISSN: 1352-2310
Large-eddy simulation (LES) is used to systematically analyse the impacts of trees on air quality in idealised street canyons. The LES tree model includes radiation, transpiration, drag and deposition effects. The superposition of background concentrations and local emissions is used to construct realistic urban scenarios for fine particulate matter (PM2.5) and nitrogen oxides (NOx). Both neutral and convective atmospheric conditions are considered to assess the importance of buoyancy effects and the role of tree shading and transpiration. Tree impact on local air quality is shown to be driven by the balance between the rate at which they actively remove pollutants from the air (deposition) and the way in which they alter the transport of pollutants within and out of the street canyon (dispersion). For pollutant species or street types where the concentration field is dominated by background levels (such as PM2.5), deposition will generally dominate and thus local air quality will improve. For pollutants and street types where local emission sources dominate (e.g. NOx on a busy road), the dispersion effects of trees become more prominent and can lead to elevated concentrations where mixing or exchange is significantly inhibited. Mixing in the convective simulation is more vigorous than in the neutral simulation which results in substantial differences in in-canyon flow fields and exchange velocities, highlighting the importance of incorporating thermal effects when studying urban trees. Increased residency times, and thus deposition, under neutral conditions suggest that trees can have amplified effects under conditions conducive of poor air quality. For the cases considered, trees largely act to improve air quality with the exception of localised hotspots. The competing effects of trees — specifically deposition versus altered exchange with the atmosphere — are also incorporated in a simple integral model that predicts whether or not the air quality wil
Suter I, Grylls T, Sützl B, et al., 2022, uDALES 1.0: a large-eddy-simulation model for urban environments, Geoscientific Model Development, Vol: 15, Pages: 5309-5335, ISSN: 1991-959X
Abstract. Urban environments increasingly move to the fore of climate and air quality research due to their central role in the population’s health and well-being. Tools to model the local environmental conditions, urban morphology and interaction with the atmospheric boundary layer play an important role for sustainable urban planning and policy-making. uDALES is a high-resolution, building-resolving large-eddy simulation code for urban microclimate and air quality. uDALES solves a surface energy balance for each urban facet and models multi-refection shortwave radiation, longwave radiation, heat storage and conductance, as well as turbulent latent and sensible heat fluxes. Vegetated surfaces and their effect on outdoor temperatures and energy demand can be studied. Furthermore a scheme to simulate emissions and transport of aerosols and some reactive gas species is present. The energy balance has been tested against idealized cases and the particle dispersion against field measurements, yielding satisfying results. uDALES can be used to study the effect of specific new constructions and building measures on the local micro-climate; or to gain new insight about the general effect of urban morphology on local climate, ventilation and dispersion. uDALES is available online under GNU General Public License and remains under maintenance and development.
Puchol-Salort P, Boskovic S, Dobson B, et al., 2022, Water neutrality framework for systemic design of new urban developments, Water Research, Vol: 219, Pages: 1-13, ISSN: 0043-1354
The climate emergency and population growth threaten urban water security in cities worldwide. Growth, urbanisation, and changes to way of life have increased housing demand, requiring cities such as London to increase their housing stock by more than 15% over the next 10 years. These new urban developments will increase water demand, urban flood risk, and river water pollution levels; therefore, an integrated systems-based approach to development and water management is needed. Water Neutrality (WN) has emerged as a concept to frame the concerns about escalating water stresses in cities. We frame WN as a planning process for new urban developments that aims to minimise impacts on urban water security and offset any remaining stresses by retrofitting existing housing stock. In this work, we present a novel systemic design framework for future urban planning called CityPlan-Water, which guides how WN might be achieved to tackle current and future water pressures at a city scale. CityPlan-Water integrates spatial data with an integrated urban water management model, enabling urban design at a systems level and systematic assessment of future scenarios. We define a Water Neutrality Index that captures how successful a given urban planning scenario is in achieving WN and how multiple interventions could be combined at a city scale to improve WN. Results from CityPlan-Water suggest that it will be necessary to retrofit almost the same number of existing homes with WN design options to completely offset the impact imposed by proposed new developments. Combining options such as water efficient appliances, water reuse systems, and social awareness campaigns can offset the impact of new development on water demand by 70%, while to neutralise potential flood risk and water pollution at a city scale, interventions such as rainwater harvesting and Blue Green Infrastructure need to be added both in new urban developments and 432,000 existing London households. We see CityPlan-Wa
Zhang Z, Paschalis A, Mijic A, et al., 2022, A mechanistic assessment of urban heat island intensities and drivers across climates, Urban Climate, Vol: 44, Pages: 1-18, ISSN: 2212-0955
The urban heat island effect (UHI) has been widely observed globally, causing climate,health, and energy impacts in cities. The UHI intensities have been found to largelydepend on background climate and the properties of the urban fabric. Yet, a completemechanistic understanding of how UHIs develop at a global scale is still missing. Usingan urban ecohydrological and land-surface model (urban Tethys-Chloris) incombination with multi-source remote sensing data, we performed simulations for 49large urban clusters across the Northern Hemisphere in 2009-2019 and analysed howsurface and canopy air UHIs (SUHI and CUHI, respectively) develop during day andnight. Biophysical drivers triggering the development of SUHIs and CUHIs have similardependencies on background climate, but with different magnitudes. In humid regionsdaytime UHIs can be largely explained by the urban-rural difference inevapotranspiration, whereas heat convection and conduction are important in aridareas. Plant irrigation can largely promote daytime urban evapotranspiration only inarid and semi-arid climates. During night, heat conduction from the urban fabric to theenvironment creates large UHIs mostly in warm arid regions. Overall, this studypresents a mechanistic quantification of how UHIs develop worldwide and proposesviable solutions for sustainable climate-sensitive mitigation strategies.
Christensen AK, Piggott MD, van Sebille E, et al., 2022, Investigating microscale patchiness of motile microbes under turbulence in a simulated convective mixed layer., PLoS Comput Biol, Vol: 18
Microbes play a primary role in aquatic ecosystems and biogeochemical cycles. Spatial patchiness is a critical factor underlying these activities, influencing biological productivity, nutrient cycling and dynamics across trophic levels. Incorporating spatial dynamics into microbial models is a long-standing challenge, particularly where small-scale turbulence is involved. Here, we combine a fully 3D direct numerical simulation of convective mixed layer turbulence, with an individual-based microbial model to test the key hypothesis that the coupling of gyrotactic motility and turbulence drives intense microscale patchiness. The fluid model simulates turbulent convection caused by heat loss through the fluid surface, for example during the night, during autumnal or winter cooling or during a cold-air outbreak. We find that under such conditions, turbulence-driven patchiness is depth-structured and requires high motility: Near the fluid surface, intense convective turbulence overpowers motility, homogenising motile and non-motile microbes approximately equally. At greater depth, in conditions analogous to a thermocline, highly motile microbes can be over twice as patch-concentrated as non-motile microbes, and can substantially amplify their swimming velocity by efficiently exploiting fast-moving packets of fluid. Our results substantiate the predictions of earlier studies, and demonstrate that turbulence-driven patchiness is not a ubiquitous consequence of motility but rather a delicate balance of motility and turbulent intensity.
Lim HD, Hertwig D, Grylls T, et al., 2022, Pollutant dispersion by tall buildings: laboratory experiments and Large-Eddy Simulation, Experiments in Fluids: experimental methods and their applications to fluid flow, Vol: 63, ISSN: 0723-4864
Pollutant dispersion by a tall-building cluster within a low-rise neighbourhood of Beijing is investigated using both full-scale Large-Eddy Simulation and water flume experiments at 1:2400 model-to-full scale with Particle Image Velocimetry and Planar Laser-Induced Fluorescence. The Large-Eddy Simulation and flume results of this realistic test case agree remarkably well despite differences in the inflow conditions and scale. Tall buildings have strong influence on the local flow and the development of the rooftop shear layer which dominates vertical momentum and scalar fluxes. Additional measurements using tall-buildings-only models at both 1:2400 and 1:4800 scales indicates the rooftop shear layer is insensitive to the scale. The relatively thicker incoming boundary layer affects the Reynolds stresses, the relative size of the pollutant source affects the concentration statistics and the relative laser-sheet thickness affects the spatially averaged results of the measured flow field. Low-rise buildings around the tall building cluster cause minor but non-negligible offsets in the peak magnitude and vertical location, and have a similar influence on the velocity and concentration statistics as the scale choice. These observations are generally applicable to pollutant dispersion of realistic tall building clusters in cities. The consistency between simulations and water tunnel experiments indicates the suitability of both methodologies.
Hossain MR, Craske J, van Reeuwijk M, 2022, Reconstructing wall shear stress from thermal wall imprints, International Journal of Heat and Fluid Flow, Vol: 95, Pages: 108976-108976, ISSN: 0142-727X
We reconstruct the wall shear stress of plane Couette flow from thermal wall imprints generated by direct numerical simulation at using an imposed surface temperature flux and fixed temperature at the bottom and top boundary, respectively. We explore the strong correlation between wall shear stress and wall temperature by analysing their joint probability density function and cross variance spectrum, before developing a spectral model based on linear regression. We then use observed symmetries in the estimator parameters to reduce the degrees of freedom of the model. The reconstructed wall shear stress reproduces streamwise streaky structures well. The relative error in the -norm of is primarily associated with the absence of local maxima in the reconstructed wall shear stress.
Cimarelli A, Fregni A, Mollicone JP, et al., 2022, Structure of turbulence in temporal planar jets, Physics of Fluids, Vol: 34, ISSN: 1070-6631
A detailed analysis of the structure of turbulence in a temporal planar turbulent jet is reported. Instantaneous snapshots of the flow andthree-dimensional spatial correlation functions are considered. It is found that the flow is characterized by large-scale spanwise vorticeswhose motion is felt in the entire flow field. Superimposed to this large-scale motion, a hierarchy of turbulent structures is present. The mostcoherent ones take the form of quasi-streamwise vortices and high and low streamwise velocity streaks. The topology of these interactingstructures is analyzed by quantitatively addressing their shape and size in the different flow regions. Such information is recognized to be relevant for a structural description of the otherwise disorganized motion in turbulent free-shear flows and can be used for the assessment ofmodels based on coherent structure assumptions. Finally, the resulting scenario provides a phenomenological description of the elementaryprocesses at the basis of turbulence in free-shear flows.
Gryspeerdt E, Louro Coelho M, Smith T, et al., 2022, Measuring cloud sensitivity to aerosols at a global scale using isolated aerosol sources
<jats:p>&lt;p&gt;The sensitivity of clouds to anthropogenic aerosol perturbations remains one of the largest uncertainties in the human forcing of the climate system. A key difficulty is in isolating the impact of aerosols from large-scale covariability of aerosol and cloud properties. Natural experiments, where aerosol is produced independently of the cloud and meteorological properties, provide a pathway to address this issue. These aerosol sources often modify cloud properties, leaving linear cloud features known as shiptracks (when formed by a ship) or pollution tracks (more generally).&lt;/p&gt;&lt;p&gt;In this work, we use a database of point sources of aerosol over both land and ocean to identify clouds that are sensitive to aerosol and to measure their response. Using a neural network to identify when a point source is modifying the cloud, we are able to measure the sensitivity of individual clouds to aerosol at a global scale, looking at over 400 million cases.&lt;/p&gt;&lt;p&gt;We find the probability of track formation is strongly dependent on the background cloud and meteorological state, similar to previous regional studies. With our global database, we identify regions that are strongly susceptible to aerosol perturbations, even where aerosol sources are rare. We find that there are several regions that are highly susceptible to aerosol, but that have been previously overlooked due to a low frequency of pollution tracks. &amp;#160; &amp;#160;&lt;/p&gt;</jats:p>
Meyer D, Grimmond S, Dueben P, et al., 2022, Machine learning emulation of urban land surface processes, Journal of Advances in Modeling Earth Systems, Vol: 14, ISSN: 1942-2466
Can we improve the modeling of urban land surface processes with machine learning (ML)? A prior comparison of urban land surface models (ULSMs) found that no single model is “best” at predicting all common surface fluxes. Here, we develop an urban neural network (UNN) trained on the mean predicted fluxes from 22 ULSMs at one site. The UNN emulates the mean output of ULSMs accurately. When compared to a reference ULSM (Town Energy Balance; TEB), the UNN has greater accuracy relative to flux observations, less computational cost, and requires fewer input parameters. When coupled to the Weather Research Forecasting (WRF) model using TensorFlow bindings, WRF-UNN is stable and more accurate than the reference WRF-TEB. Although the application is currently constrained by the training data (1 site), we show a novel approach to improve the modeling of surface fluxes by combining the strengths of several ULSMs into one using ML.
Brizzolara S, Mollicone J-P, van Reeuwijk M, et al., 2022, Transition from shear-dominated to Rayleigh–Taylor turbulence – CORRIGENDUM, Journal of Fluid Mechanics, Vol: 934, Pages: 1-1, ISSN: 0022-1120
Vouriot CVM, Burridge HC, van Reeuwijk M, 2022, Assessing exposure to infected breath in naturally ventilated classrooms
A typical UK naturally ventilated classroom in wintertime is considered using CFD simulations. The ratio between actual exposure to infected breath and proxy exposure is calculated from point measurements of CO2. At the breathing plane, the proxy exposure is within a factor 2 of the actual far field exposure for measurements taken within approximately 90 % of the room cross-sectional area. While this is significant it remains small compared to the typical uncertainties associated with the parametrisation of many airborne diseases. As such CO2 measurements remain a useful and cost-effective way to infer exposure and thus the risk of far-field airborne infection.
Jordan OH, Rooney GG, Devenish BJ, et al., 2021, Under pressure: turbulent plumes in a uniform crossflow, Journal of Fluid Mechanics, Vol: 932, ISSN: 0022-1120
Direct numerical simulation is used to investigate the integral behaviour of buoyant plumessubjected to a uniform crossflow that are infinitely lazy at the source. Neither a plumetrajectory defined by the centre of mass of the plume zc nor a trajectory defined by thecentral streamline zU is aligned with the average streamlines inside the plume. Both zcand zU are shown to correlate with field lines of the total buoyancy flux, which impliesthat a model for the vertical turbulent buoyancy flux is required to faithfully predict theplume angle. A study of the volume conservation equation shows that entrainment due toincorporation of ambient fluid with non-zero velocity due to the increase in the surfacearea (the Leibniz term) is the dominant entrainment mechanism in strong crossflows. Thedata indicate that pressure differences between the top and bottom of the plume play aleading role in the evolution of the horizontal and vertical momentum balances and arecrucial for appropriately modelling plume rise. By direct parameterisation of the verticalbuoyancy flux, the entrainment and the pressure, an integral plume model is developedwhich is in good agreement with the simulations for sufficiently strong crossflow. Aperturbation expansion shows that the current model is an intermediate-range model validfor downstream distances up to 100b–1000b, where b is the buoyancy length scale basedon the flow speed and plume buoyancy flux.
Puchol-Salort P, Lu J, Boskovic S, et al., 2021, Urban water neutrality at different scales: CityPlan design and evaluation framework, egu proceedings
<jats:p>&lt;p&gt;London aims to build more than half a million households over the next 10 years to cope with the growing demand for housing in the UK. In this future scenario, urban water security levels will be threatened due to new development pressures combined with the climate emergency and exponential population growth in the city. In addition to this, there is a lack of agreement between the policy and decision-making sectors to decide what can be accepted as a sustainable urban development project and which are the physical and decision boundaries inside the city (i.e., while boroughs and wastewater zones present decision boundaries, new urban developments have physical boundaries only). In our previous work, we developed a new concept for urban Water Neutrality (WN) inside an operational framework called CityPlan to frame the concerns about rising water stresses in cities. This framework integrates spatial data with an integrated urban water management model, enabling urban design at systems level and delivering a new index that assesses possible future scenarios. Despite several studies related to WN, little evidence is yet available in the literature of how urban water neutrality can be achieved at different urban scales and if results might vary depending on the scale studied.&lt;/p&gt;&lt;p&gt;In this work, we expand the CityPlan framework and present an innovative evaluation approach that sets several urban indicators to be tested at different urban scales. As part of the evaluation toolkit of CityPlan, we also develop the Water Efficiency Certificate (WEC) by boroughs using two novel criteria: the Housing Age Indicator (HAI) and the Device Efficiency Score (DES). The WEC evaluates the current situation of household water consumption and can be used to support predictions of water consumption under different scenarios, to study the potential for retrofitting existing residential buildings, and to de
Boetti M, van Reeuwijk M, Liberzon A, 2021, Potential-enstrophy lengthscale for the turbulent/nonturbulent interface in stratified flow, Physical Review Fluids, Vol: 6, ISSN: 2469-990X
We study properties of the turbulent/nonturbulent interface (TNTI) between two layers of stratified fluids through direct numerical simulations (DNSs). Zero mean shear forcing creates moderate turbulence in one of the layers with the Taylor microscale Reynolds numbers in the mixed region of Reλ=35,44. We focus on the similarities and differences of the properties of stratified TNTIs due to two distinct types of forcing: (a) convection due to a boundary heat source and (b) agitation resembling a vertically oscillating grid experiment. Similarly to other stratified flows, the small scale dynamics of the TNTI in the present DNSs differ from what would be expected in comparable yet unstratified TNTIs. The interface cannot be indeed uniquely identified by the commonly used vorticity ω. Instead, the potential enstrophy Π2 is shown to be the most appropriate marker in these flow cases. It is emphasized that the Kolmogorov lengthscale ηK∼√ν/ω is not representative of the small scale dynamics of the interface. Hence, an alternative lengthscale, ηΠ, is defined, in analogy to the Kolmogorov scale, based on the potential enstrophy, ηΠ=(ν3/Π∗)1/6, being Π∗=|g/ρ0Π|. The conditionally averaged profiles of potential enstrophy Π2, enstrophy ω2, and turbulent kinetic energy dissipation ε of the two distinctly different turbulence forcing cases collapsed when scaled by ηΠ at different time instants in each simulation. This implies not only the self-similarity of the small scale statistics of the TNTI in either of the two cases, but also the similarity between the statistics of the two different turbulent flows in the proximity of TNTI.
Puchol-Salort P, Mijic A, van Reeuwijk M, et al., 2021, Urban Water Neutrality at City Scale: CityPlan Evaluation and Design Module, Earth and Space Science Open Archive
Sützl BS, Rooney GG, Finnenkoetter A, et al., 2021, Distributed urban drag parameterization for sub‐kilometre scale numerical weather prediction, Quarterly Journal of the Royal Meteorological Society, Vol: 147, Pages: 3940-3956, ISSN: 0035-9009
A recently developed, height-distributed urban drag parametrization is tested with the London Model, a sub-kilometre resolution version of the Met Office Unified Model over Greater London. The distributed-drag parametrization requires vertical morphology profiles in the form of height-distributed frontal-area functions, which capture the full extent and variability of building heights. London's morphology profiles are calculated and parametrized by an exponential distribution with the ratio of maximum to mean building height as the parameter. A case study evaluates the differences between the new distributed-drag scheme and the current London Model setup using the MORUSES urban land-surface model. The new drag parametrization shows increased horizontal spatial variability in total surface stress, identifying densely built-up areas, high-rise building clusters, parks, and the river. Effects on the wind speed in the lower levels include a lesser gradient and more heterogeneous wind profiles, extended wakes downwind of the city centre, and vertically growing perturbations that suggest the formation of internal boundary layers. The surface sensible heat fluxes are underpredicted, which is attributed to difficulties coupling the distributed momentum exchange with the surface-based heat exchange.
Brizzolara S, Mollicone J-P, van Reeuwijk M, et al., 2021, Transition from shear-dominated to Rayleigh-Taylor turbulence, Journal of Fluid Mechanics, Vol: 924, Pages: 1-13, ISSN: 0022-1120
Turbulent mixing layers in nature are often characterised by the presence of a mean shear and an unstable buoyancy gradient between two streams of different velocities. Depending on the relative strength of shear versus buoyancy, either the former or the latter may dominate the turbulence and mixing between the two streams. In this paper, we present a phenomenological theory that leads to the identification of two distinct turbulent regimes: an early regime, dominated by mean shear, and a later regime dominated by buoyancy. The main theoretical result consists of the identification of a cross-over timescale that distinguishes between the shear- and the buoyancy-dominated turbulence. This cross-over time depends on three large-scale constants of the flow, namely, the buoyancy difference, the velocity difference between the two streams and the gravitational acceleration. We validate our theory against direct numerical simulations of a temporal turbulent mixing layer compounded with an unstable stratification. We observe that the cross-over time correctly predicts the transition from shear- to buoyancy-driven turbulence, in terms of turbulent kinetic energy production, energy spectra scaling and mixing layer thickness.
Grylls T, Suter I, Sützl B, et al., 2021, uDALES: large-eddy-simulation software for urban flow, dispersion, and microclimate modelling, Journal of Open Source Software, Vol: 6, Pages: 1-4, ISSN: 2475-9066
With continuing urbanization, challenges associated with the urban environment such as airquality, heat islands, pedestrian thermal comfort, and wind loads on tall buildings, are increasingly relevant. Our ability to realistically capture processes such as the transport of heat,moisture, momentum and pollutants, and those of radiative transfer in urban environmentsis key to understanding and facing these challenges (Oke et al., 2017). The turbulent natureof the urban flow field and the inherent heterogeneity and wide range of scales associatedwith the urban environment result in a complex modelling problem. Large-eddy simulation(LES) is an approach to turbulence modelling used in computational fluid dynamics to simulate turbulent flows over a wide range of spatial and temporal scales. LES is one of the mostpromising tools to model the interactions typical of urban areas due to its ability to resolve theurban flow field at resolutions of O(1 m, 0.1 s), over spatial domains of O(100 m), and timeperiods of O(10 h). Although there are many scalable LES models for atmospheric flows, toour knowledge, only few are capable of explicitly representing buildings and of modelling thefull range of urban processes (e.g. PALM-4U Resler et al. (2017); Maronga et al. (2020); orOpenFoam Weller et al. (1998)).
Nair V, Heus T, van Reeuwijk M, 2021, A Lagrangian study of interfaces at the edges of cumulus clouds, Journal of the Atmospheric Sciences, Vol: 78, Pages: 2397-2412, ISSN: 0022-4928
Interfaces at the edge of an idealised, non-precipitating, warm cloud are studied using Direct Numerical Simulation (DNS) complemented with a Lagrangian particle tracking routine. Once a shell has formed, four zones can be distinguished: the cloud core, visible shell, invisible shell and the environment. The union of the visible and invisible regions is the shell commonly referred to in literature. The boundary between the invisible shell and the environment is the Turbulent-NonTurbulent Interface (TNTI) which is typically not considered in cloud studies. Three million particles were seeded homogeneously across the domain and properties were recorded along individual trajectories. The results demonstrate that the traditional cloud boundary (separating cloudy and non-cloudy regions using thresholds applied on liquid condensate or updraft velocity) are some distance away from the TNTI. Furthermore, there is no dynamic difference between the traditional liquid-condensate boundary and the region extending to the TNTI. However, particles crossing the TNTI exhibit a sharp jump in enstrophy and a smooth increase in buoyancy. The traditional cloud boundary coincides with the location of minimum buoyancy in the shell. The shell pre-mixes the entraining and detraining air and analysis reveals a highly skewed picture of entrainment and detrainment at the traditional cloud boundary. A preferential entrainment of particles with velocity and specific humidity higher than the mean values in the shell is observed. Large-eddy simulation of a more realistic setup detects an interface with similar properties using the same thresholds as in the DNS, indicating that the DNS results extrapolate beyond their idealised conditions.
van Reeuwijk M, Grylls T, 2021, Tree model with drag, transpiration, shading and deposition: Identification of cooling regimes and large-eddy simulation, EGU General Assembly 2021, Publisher: Copernicus GmbH, Pages: 1-1
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.