Imperial College London


Faculty of EngineeringDepartment of Materials

Reader in Nuclear Materials



+44 (0)20 7594 6763m.wenman




B301aRoyal School of MinesSouth Kensington Campus





Mark Wenman joined Imperial College London as the EDF Energy Research Fellow in Nuclear Fuels in Nov 2008. He was made Lecturer in 2011, Senior Lecturer in 2017 and Reader in Nuclear Materials in 2021.  He is the Director of the EPSRC Centre for Doctoral Training in Nuclear Energy Futures. He led the "Neu Irr Steels" research programme (EP/P005101/1) on neutron irradiations of reactor pressure vessel steels and is part of the MIDAS programme grant on zirconium alloys.  Mark was previsouly a Lecturer for the MoD in the Reactor Engineering Group at the Nuclear Department, HMS Sultan in Gosport (2003-2008).

Mark has teaching experience in general nuclear engineering and has taught Reactor Dynamics and Materials Science at MSc level.  He set-up the MSc in Nuclear Engineering at Imperial College in 2010 and was course director for 3 years.  Mark has been involved in several external committees as an independent expert.  These include the Technical Advisory Group for Structural Integrity (TAGSI), Core Materials Working Group (Rolls-Royce/MoD) and is also  UK academic representative for the Fuels Working Group for the European Jules Horowitz reactor project.

His key research interests are in the field of nuclear engineering materials (specialising in metallurgy) and include micromechanisms of fracture, hydrogen embrittlement and corrosion, irradiation damage and modelling from continuum through to micro and atomic scales. Materials include nuclear fuel, zirconium alloys, stainless steels and ferritic steels.

Selected Publications

Journal Articles

Sutton AP, Nazarov R, Majevadia JS, et al., 2016, First-principles calculation of the elastic dipole tensor of a point defect: Application to hydrogen in α-zirconium, Physical Review B, Vol:94, ISSN:1550-235X

Mella R, Wenman MR, 2015, Modelling explicit fracture of nuclear fuel pellets using peridynamics, Journal of Nuclear Materials, Vol:467, ISSN:0022-3115, Pages:58-67

Lumley SC, Grimes RW, Murphy ST, et al., 2014, The thermodynamics of hydride precipitation: the importance of entropy, enthalpy and disorder, Acta Materialia, Vol:79, ISSN:1359-6454, Pages:351-362

Beckmann R, Mella R, Wenman MR, 2013, Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in Abaqus, Computer Methods in Applied Mechanics and Engineering, Vol:263, ISSN:0045-7825, Pages:71-80

Lumley SC, Murphy ST, Burr PA, et al., 2013, The stability of alloying additions in Zirconium, Journal of Nuclear Materials, Vol:437, ISSN:0022-3115, Pages:122-129

Burr PA, Murphy ST, Lumley SC, et al., 2013, Hydrogen accommodation in Zr second phase particles: Implications for H pick-up and hydriding of Zircaloy-2 and Zircaloy-4, Corrosion Science, Vol:69, Pages:1-4

Wenman MR, Chard-Tuckey PR, 2010, Modelling and experimental characterisation of the Luders strain in complex loaded ferritic steel compact tension specimens, International Journal of Plasticity, Vol:26, ISSN:0749-6419, Pages:1013-1028

Wenman MR, Trethewey KR, Jarman SE, et al., 2008, A finite-element computational model of chloride-induced transgranular stress-corrosion cracking of austenitic stainless steel, Acta Materialia, Vol:56, ISSN:1359-6454, Pages:4125-4136


Mella R, Wenman MR, 2012, Finite element modelling of advanced gas-cooled reactor fuel performance and cladding structural integrity, TOP FUEL

More Publications