Imperial College London

DrMariosChristou

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Senior Lecturer
 
 
 
//

Contact

 

+44 (0)20 7594 6043marios.christou Website

 
 
//

Assistant

 

Miss Rebecca Naessens +44 (0)20 7594 5990

 
//

Location

 

334Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

36 results found

Karmpadakis I, Swan C, Christou M, 2022, A new wave height distribution for intermediate and shallow water depths, Coastal Engineering, Vol: 175, Pages: 1-15, ISSN: 0378-3839

The present paper addresses the short-term distribution of zero-crossing wave heights in intermediate and shallow water depths. New physical insights are provided regarding the effects of nonlinearity, directionality, reduced effective water depth and finite spectral bandwidth. These are demonstrated through the analysis of a large database of experimental simulations of short-crested sea-states on flat bed bathymetries. A new wave height model is proposed building upon these physical insights and is calibrated using the experimental data. Independent comparisons between field measurements and the proposed model indicate that it is appropriate to a wide range of incident wave conditions and that it provides considerable improvement over existing models.

Journal article

Ewans K, Christou M, Ilic S, Jonathan Pet al., 2020, Identifying Higher-order Interactions in Wave Time-series, Journal of Offshore Mechanics and Arctic Engineering: Transactions of the ASME, ISSN: 0195-0738

Journal article

Craciunescu C, Christou M, 2020, Wave breaking energy dissipation in long-crested focused wave groups based on JONSWAP spectra, Applied Ocean Research, Vol: 99, ISSN: 0141-1187

The present study is a new experimental investigation into energy dissipation due to wave breaking. Long-crested wave groups based on JONSWAP spectra are generated in a wave flume to estimate the energy loss from the wave packet due to the occurrence of single breaking events. These events range from gentle spilling to large plunging breakers. The fractional energy losses and breaking strength parameter are shown to be in good agreement with previous studies based on other spectral shapes. Due to the significance of wave breaking in the evolution of large ocean waves, the dissipative model of Tian et al. (2010) [1] is examined and improved upon for JONSWAP spectra. Local wave geometry and breaking duration obtained from measurements using an accurate two-camera setup are employed to obtain new parameterisations, directly applicable to realistic ocean waves. An increase of approximately 85% in the proportionality constant needed to compute νeddy is deemed necessary such that energy losses from the new experimental wave groups are accurately captured. Furthermore, it is shown that the time and length scales of the breaking process are well correlated to the local steepness of the wave event, and new fits are obtained that considerably reduce the scatter of the original model. As focused wave groups represent the most probable shape of large wave events in the open seas, the improved model can be implemented in computationally-efficient numerical potential flow solvers to simulate energy dissipation from breaking events in realistic waves.

Journal article

Craciunescu CC, Christou M, 2020, On the calculation of wavenumber from measured time traces, Applied Ocean Research, Vol: 98, Pages: 1-16, ISSN: 0141-1187

When characterising local geometry for unsteady water waves, the accurate determination of spatial quantities such as the wavenumber from measured time traces is non-trivial. The present study investigates different methods in order to highlight the discrepancies that arise when estimating the wavenumber from fully nonlinear numerical time traces of the free surface profile. To this extent, the open research topic relating to the accuracy of the Hilbert transform in analysing broad-banded signals is addressed. The accuracy of local wavenumber estimates from the Hilbert transform are shown to have a strong dependency on the bandwidth of the underlying spectrum. For broad-banded sea-states there is a significant departure of the Hilbert transform predictions from actual wavenumber values. In contrast, the Double Fourier numerical model of Baldock and Swan (1994) [1] is shown to obtain accurate estimates of local wave geometry from just a single measured time trace, regardless of spectral characteristics; it is thus the recommended method. In addition, an empirical correction factor is proposed that can be applied to the linear dispersion equation in order to obtain an improved wavenumber estimate. The correction is tested for unidirectional deep water, nonlinear random sea-states and shown to offer considerable improvements in the local wavenumber estimates.

Journal article

Karmpadakis I, Swan C, Christou M, 2020, Assessment of wave height distributions using an extensive field database, Coastal Engineering, Vol: 157, Pages: 1-15, ISSN: 0378-3839

The present paper investigates the short-term statistical distribution of wave heights. Specifically, some of the most commonly applied wave height distributions are assessed using field measurements. The latter comprise of wave radar observations from 10 different locations in the North Sea and cover water depths between 7.7 m and 45 m. In total, the field database includes more than 200 million waves, making it one of the largest of its kind in this water depth regime. In using these data, the accuracy of existing wave height distributions has been examined and guidance is provided concerning the best performing models and their domain of applicability. Additionally, insights concerning the influence of key met-ocean parameters are also provided. Taken together, the results in this paper present an overview of the statistical behaviour of wave heights in finite water depths, as observed in the field.

Journal article

Eichentopf S, Alsina J, Christou M, Kuriyama Y, Karunarathna Het al., 2020, Storm sequencing and beach profile variability at Hasaki, Japan, Marine Geology, ISSN: 0025-3227

Journal article

Karmpadakis I, Swan C, Christou M, 2019, Laboratory investigation of crest height statistics in intermediate water depths, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol: 475, Pages: 1-24, ISSN: 1364-5021

This paper concerns the statistical distribution of the crest heights associated with surface waves in intermediate water depths. The results of a new laboratory study are presented in which data generated in different experimental facilities are used to establish departures from commonly applied statistical distributions. Specifically, the effects of varying sea-state steepness, effective water depth and directional spread are investigated. Following an extensive validation of the experimental data, including direct comparisons to available field data, it is shown that the nonlinear amplification of crest heights above second-order theory observed in steep deep water sea states is equally appropriate to intermediate water depths. These nonlinear amplifications increase with the sea-state steepness and reduce with the directional spread. While the latter effect is undoubtedly important, the present data confirm that significant amplifications above second order (5–10%) are observed for realistic directional spreads. This is consistent with available field data. With further increases in the sea-state steepness, the dissipative effects of wave breaking act to reduce these nonlinear amplifications. While the competing mechanisms of nonlinear amplification and wave breaking are relevant to a full range of water depths, the relative importance of wave breaking increases as the effective water depth reduces.

Journal article

Craciunescu CC, Christou M, 2019, The effect of wave crest speed in breaking waves, Publisher: IOP Publishing, Pages: 012039-012039, ISSN: 1757-8981

<jats:title>Abstract</jats:title> <jats:p>The present work focuses on the evolution of the crest speed around large focal type water wave events. The phenomenon of crest slowdown around the point of maximum elevation is studied numerically using a boundary element model. The model is used to generate large design waves based on realistic ocean spectra. The evolution in terms of coupling between crest speed reduction and increase in particle velocities is studied up until initiation of wave breaking. It is shown that this coupling is a viable mechanism that leads to the formation of large deep water unidirectional breaking waves regardless of spectral shape and bandwidth.</jats:p>

Conference paper

Karmpadakis I, Swan C, Christou M, 2019, Wave height and crest height distributions in shallow water — Analysis of field data, Coastal Structures

Conference paper

Craciunescu C, Christou M, 2019, Identifying Breaking Waves from Measured Time Traces, 29th International Ocean and Polar Engineering Conference

Conference paper

Coffey C, Gibson R, Christou M, 2019, Uncertainty in explosion risk assessment, 29th Hazards Conference

Conference paper

Gibson R, Christou M, 2019, METOCEAN CRITERIA FOR THE FATIGUE ANALYSIS OF SUBSEA PIPELINES, 38th ASME International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2019), Publisher: AMER SOC MECHANICAL ENGINEERS, ISSN: 2153-4772

Conference paper

Ewans K, Christou M, Ilic S, Jonathan Pet al., 2019, IDENTIFYING HIGHER-ORDER INTERACTIONS IN WAVE TIME-SERIES, 38th ASME International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2019), Publisher: AMER SOC MECHANICAL ENGINEERS, ISSN: 2153-4772

Conference paper

Angeloudis A, Piggott MD, Kramer SC, Avdis A, Coles D, Christou Met al., 2017, Comparison of 0-D, 1-D and 2-D model capabilities for tidal range energy resource assessments, European Wave and Tidal Energy Conference, Cork, Ireland

Conference paper

Beyer M, Swan C, Christou M, 2017, Focused waves on depth-varying currents: the role of vorticity, 27th International Ocean and Polar Engineering Conference

Conference paper

Hadjigeorgiou D, Swan C, Christou M, 2017, Numerical investigation of crest-height statistics in deep water, 27th International Ocean and Polar Engineering Conference

Conference paper

Jaouen F, Waals O, de Jong M, van der Hout A, Christou Met al., 2016, Methodology for the design of LNG terminals in a nearshore environment, 35th Conference of Ocean, Offshore and Arctic Engineering

Conference paper

Makri I, Rose S, Christou M, Gibson R, Feld Get al., 2016, Examining field measurements of deep-water crest statistics, Conference of Ocean, Offshore and Arctic Engineering

Conference paper

Wu Y, Randell D, Christou M, Ewans K, Jonathan Pet al., 2016, On the distribution of wave height in shallow water, Coastal Engineering, Vol: 111, Pages: 39-49, ISSN: 0378-3839

The statistical distribution of the height of sea waves in deep water has been modelled using the Rayleigh (Longuet-Higgins, 1952) and Weibull distributions (Forristall, 1978). Depth-induced wave breaking leading to restriction on the ratio of wave height to water depth requires new parameterisations of these or other distributional forms for shallow water. Glukhovskiy (1966) proposed a Weibull parameterisation accommodating depth-limited breaking, modified by van Vledder (1991). Battjes and Groenendijk (2000) suggested a two-part Weibull–Weibull distribution. Here we propose a two-part Weibull-generalised Pareto model for wave height in shallow water, parameterised empirically in terms of sea state parameters (significant wave height, HS, local wave-number, kL, and water depth, d), using data from both laboratory and field measurements from 4 offshore locations. We are particularly concerned that the model can be applied usefully in a straightforward manner; given three pre-specified universal parameters, the model further requires values for sea state significant wave height and wave number, and water depth so that it can be applied. The model has continuous probability density, smooth cumulative distribution function, incorporates the Miche upper limit for wave heights (Miche, 1944) and adopts HS as the transition wave height from Weibull body to generalised Pareto tail forms. Accordingly, the model is effectively a new form for the breaking wave height distribution. The estimated model provides good predictive performance on laboratory and field data.

Journal article

Spinneken J, Christou M, Swan C, 2014, Force-controlled absorption in a fully-nonlinear numerical wave tank, Journal of Computational Physics, Vol: 272, Pages: 127-148, ISSN: 0021-9991

An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank.In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain.The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

Journal article

Gibson R, Christou M, Feld G, 2014, The statistics of wave height and crest elevation during the December 2012 storm in the North Sea, OCEAN DYNAMICS, Vol: 64, Pages: 1305-1317, ISSN: 1616-7341

Journal article

Christou M, Ewans K, 2014, Field Measurements of Rogue Water Waves, JOURNAL OF PHYSICAL OCEANOGRAPHY, Vol: 44, Pages: 2317-2335, ISSN: 0022-3670

Journal article

Gibson R, Christou M, Feld G, 2013, EXAMINING FIELD MEASUREMENTS DURING THE DECEMBER 2012 STORM IN THE NORTH SEA, PROCEEDINGS OF THE 13TH INTERNATIONAL WORKSHOP ON WAVE HINDCASTING & FORECASTING & 4TH COASTAL HAZARDS SYMPOSIUM, Banff, Canada

Conference paper

Maris J, Christou M, Huijsmans R, 2012, Investigating the Use of the Hilbert-Huang Transform for the Analysis of Freak Waves, PROCEEDINGS OF THE 31ST CONFERENCE OF OFFSHORE MECHANICS & ARCTIC ENGINEERING

Conference paper

Christou M, Ewans K, 2011, Examining a comprehensive dataset with thousands of freak wave events. Part 1 - Description of the data and the quality control procedure, PROCEEDINGS OF THE 30TH CONFERENCE OF OFFSHORE MECHANICS & ARCTIC ENGINEERING

Conference paper

Buchner B, Forristall G, Ewans K, Christou M, Hennig Jet al., 2011, New insights in extreme crest height distributions - A summary of the CresT JIP, PROCEEDINGS OF THE 30TH CONFERENCE OF OFFSHORE MECHANICS & ARCTIC ENGINEERING

Conference paper

Christou M, Rijnsdorp DP, Ewans K, 2011, Analysis of shallow water wave measurements recorded at the Field Research Facility, PROCEEDINGS OF THE 12TH INTERNATIONAL WORKSHOP ON WAVE HINDCASTING & FORECASTING & 3RD COASTAL HAZARDS SYMPOSIUM

Conference paper

Christou M, Ewans K, 2011, Examining a comprehensive dataset with thousands of freak wave events. Part 2 - Analysis and findings, PROCEEDINGS OF THE 30TH CONFERENCE OF OFFSHORE MECHANICS & ARCTIC ENGINEERING

Conference paper

Christou M, Ewans K, Clauss GF, Klein Met al., 2010, The spatial evolution of the spectral characteristics of the Draupner new year wave, 29TH CONFERENCE OF OFFSHORE MECHANICS & ARCTIC ENGINEERING

Conference paper

Christou M, 2009, Fully Nonlinear Computations of Waves and Wave-structure Interaction

Thesis dissertation

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00324469&limit=30&person=true