Imperial College London

ProfessorMarkNeil

Faculty of Natural SciencesDepartment of Physics

Professor of Photonics
 
 
 
//

Contact

 

+44 (0)20 7594 7611mark.neil

 
 
//

Assistant

 

Ms Judith Baylis +44 (0)20 7594 7713

 
//

Location

 

608Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Soltan:2018:1741-2552/aadd55,
author = {Soltan, A and Barrett, JM and Maaskant, P and Armstrong, N and Al-Atabany, W and Chaudet, L and Neil, M and Sernagor, E and Degenaar, P},
doi = {1741-2552/aadd55},
journal = {Journal of Neural Engineering},
title = {A head mounted device stimulator for optogenetic retinal prosthesis},
url = {http://dx.doi.org/10.1088/1741-2552/aadd55},
volume = {15},
year = {2018}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Objective. Our main objective is to demonstrate that compact high radiance gallium nitride displays can be used with conventional virtual reality optics to stimulate an optogenetic retina. Hence, we aim to introduce a non-invasive approach to restore vision for people with conditions such as retinitis pigmentosa where there is a remaining viable communication link between the retina and the visual cortex. Approach. We design and implement the headset using a high-density µLED matrix, Raspberry Pi, microcontroller from NXP and virtual reality lens. Then, a test platform is developed to evaluate the performance of the headset and the optical system. Furthermore, image simplification algorithms are used to simplify the scene to be sent to the retina. Moreover, in vivo evaluation of the genetically modified retina response at different light intensity is discussed to prove the reliability of the proposed system. Main results. We demonstrate that in keeping with regulatory guidance, the headset displays need to limit their luminance to 90 kcd m−2. We demonstrate an optical system with 5.75% efficiency which allows for 0.16 mW mm−2 irradiance on the retina within the regulatory guidance, but which is capable of an average peak irradiance of 1.35 mW mm−2. As this is lower than the commonly accepted threshold for channelrhodopsin-2, we demonstrate efficacy through an optical model of an eye onto a biological retina. Significance. We demonstrate a fully functional 8100-pixel headset system including software/hardware which can operate on a standard consumer battery for periods exceeding a 24 h recharge cycle. The headset is capable of delivering enough light to stimulate the genetically modified retina cells and also keeping the amount of light below the regulation threshold for safety.
AU - Soltan,A
AU - Barrett,JM
AU - Maaskant,P
AU - Armstrong,N
AU - Al-Atabany,W
AU - Chaudet,L
AU - Neil,M
AU - Sernagor,E
AU - Degenaar,P
DO - 1741-2552/aadd55
PY - 2018///
SN - 1741-2552
TI - A head mounted device stimulator for optogenetic retinal prosthesis
T2 - Journal of Neural Engineering
UR - http://dx.doi.org/10.1088/1741-2552/aadd55
UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000447050900001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202
UR - http://hdl.handle.net/10044/1/83119
VL - 15
ER -