Imperial College London

DrMarufAli

Faculty of Natural SciencesDepartment of Life Sciences

Senior Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 5733maruf.ali Website

 
 
//

Location

 

505Sir Ernst Chain BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

17 results found

Larburu N, Adams C, Chen C, Nowak P, Ali Met al., 2020, Mechanism of Hsp70 specialised interactions in protein translocation and the unfolded protein response, Open Biology, Vol: 10, Pages: 1-9, ISSN: 2046-2441

Hsp70 chaperones interact with substrate proteins in a coordinated fashion that is regulated by nucleotides and enhanced by assisting cochaperones. There are numerous homologues and isoforms of Hsp70 that participate in a wide variety of cellular functions. This diversity can facilitate adaption or specialisation based on particular biological activity and location within the cell. In this review, we highlight two specialised binding partner proteins, Tim44 and IRE1, that interact with Hsp70 at the membrane in order to serve their respective roles in protein translocation and UPR signaling. Recent mechanistic data suggest analogy in the way the two Hsp70 homologues (BiP and mtHsp70) can bind and release from IRE1 and Tim44 upon substrate engagement. These shared mechanistic features may underlie how Hsp70 interacts with specialised binding partners and may extend our understanding of the mechanistic repertoire that Hsp70 chaperones possess.

Journal article

Kopp MC, Larburu N, vinoth D, Adams CJ, Ali MMUet al., 2019, UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor, Nature Structural and Molecular Biology, Vol: 26, Pages: 1053-1062, ISSN: 1545-9985

BiP is a major ER chaperone and suggested to act as primary sensor in the activationof the unfolded protein response (UPR). How BiP operates as a molecular chaperoneand as an ER stress sensor is unknown. Here, by reconstituting components ofhuman UPR, ER stress and BiP chaperone systems, we discover that the interactionof BiP with the luminal domains (LD) of UPR proteins, IRE1 and PERK, switch BiPfrom its chaperone cycle into an ER stress sensor cycle by preventing the binding ofits cochaperones, with loss of ATPase stimulation. Furthermore, misfolded proteindependentdissociation of BiP from IRE1 is primed by ATP but not ADP. Our dataelucidate a previously unidentified mechanistic cycle of BiP function that explains itsability to act as a Hsp70 chaperone and ER stress sensor.

Journal article

Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMUet al., 2019, Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1, Frontiers in Molecular Biosciences, Vol: 6, ISSN: 2296-889X

The endoplasmic reticulum (ER) is an important site for protein folding and maturation in eukaryotes. The cellular requirement to synthesize proteins within the ER is matched by its folding capacity. However, the physiological demands or aberrations in folding may result in an imbalance which can lead to the accumulation of misfolded protein, also known as “ER stress.” The unfolded protein response (UPR) is a cell-signaling system that readjusts ER folding capacity to restore protein homeostasis. The key UPR signal activator, IRE1, responds to stress by propagating the UPR signal from the ER to the cytosol. Here, we discuss the structural and molecular basis of IRE1 stress signaling, with particular focus on novel mechanistic advances. We draw a comparison between the recently proposed allosteric model for UPR induction and the role of Hsp70 during polypeptide import to the mitochondrial matrix.

Journal article

Sepulveda D, Rojas-Rivera D, Rodriguez DA, Groenendyk J, Kohler A, Lebeaupin C, Ito S, Urra H, Carreras-Sureda A, Hazari Y, Vasseur-Cognet M, Ali MMU, Chevet E, Campos G, Godoy P, Vaisar T, Bailly-Maitre B, Nagata K, Michalak M, Sierralta J, Hetz Cet al., 2018, Interactome Screening Identifies the ER Luminal Chaperone Hsp47 as a Regulator of the Unfolded Protein Response Transducer IRE1 alpha, MOLECULAR CELL, Vol: 69, Pages: 238-+, ISSN: 1097-2765

Journal article

Kopp MC, Nowak PR, Larburu N, Adams CJ, Ali MMet al., 2018, In vitro FRET analysis of IRE1 and BiP association and dissociation upon endoplasmic reticulum stress., Elife, Vol: 7

The unfolded protein response (UPR) is a key signaling system that regulates protein homeostasis within the endoplasmic reticulum (ER). The primary step in UPR activation is the detection of misfolded proteins, the mechanism of which is unclear. We have previously suggested an allosteric mechanism for UPR induction (Carrara et al., 2015) based on qualitative pull-down assays. Here, we develop an in vitro Förster resonance energy transfer (FRET) UPR induction assay that quantifies IRE1 luminal domain and BiP association and dissociation upon addition of misfolded proteins. Using this technique, we reassess our previous observations and extend mechanistic insight to cover other general ER misfolded protein substrates and their folded native state. Moreover, we evaluate the key BiP substrate-binding domain mutant V461F. The new experimental approach significantly enhances the evidence suggesting an allosteric model for UPR induction upon ER stress.

Journal article

Cerezo M, Lehraiki A, Millet A, Rouaud F, Plaisant M, Jaune E, Botton T, Ronco C, Abbe P, Amdouni H, Passeron T, Hofman V, Mograbi B, Dabert-Gay A-S, Debayle D, Alcor D, Rabhi N, Annicotte J-S, Heliot L, Gonzalez-Pisfil M, Robert C, Morera S, Vigouroux A, Gual P, Ali MMU, Bertolotto C, Hofman P, Ballotti R, Benhida R, Rocchi Set al., 2016, Compounds Triggering ER Stress Exert Anti-Melanoma Effects and Overcome BRAF Inhibitor Resistance, Cancer Cell, Vol: 29, Pages: 805-819, ISSN: 1878-3686

Journal article

Carrara M, Prischi F, Nowak P, Ali Met al., 2015, Crystal structures reveal transient PERK luminal domain tetramerization in endoplasmic reticulum stress signaling, EMBO Journal, Vol: 34, Pages: 1589-1600, ISSN: 0261-4189

Stress caused by accumulation of misfolded proteins within the endoplasmic reticulum (ER) elicits a cellular unfolded protein response (UPR) aimed at maintaining protein‐folding capacity. PERK, a key upstream component, recognizes ER stress via its luminal sensor/transducer domain, but the molecular events that lead to UPR activation remain unclear. Here, we describe the crystal structures of mammalian PERK luminal domains captured in dimeric state as well as in a novel tetrameric state. Small angle X‐ray scattering analysis (SAXS) supports the existence of both crystal structures also in solution. The salient feature of the tetramer interface, a helix swapped between dimers, implies transient association. Moreover, interface mutations that disrupt tetramer formation in vitro reduce phosphorylation of PERK and its target eIF2α in cells. These results suggest that transient conversion from dimeric to tetrameric state may be a key regulatory step in UPR activation.

Journal article

Carrara M, Prischi F, Nowak PR, Kopp MC, Ali MMUet al., 2015, Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein C(H)1 to initiate ER stress signaling, ELIFE, Vol: 4, ISSN: 2050-084X

Journal article

Prischi F, Nowak PR, Carrara M, Ali MMUet al., 2014, Phosphoregulation of Ire1 RNase splicing activity., Nat Commun, Vol: 5

Ire1 is activated in response to accumulation of misfolded proteins within the endoplasmic reticulum as part of the unfolded protein response (UPR). It is a unique enzyme, possessing both kinase and RNase activity that is required for specific splicing of Xbp1 mRNA leading to UPR activation. How phosphorylation impacts on the Ire1 splicing activity is unclear. In this study, we isolate distinct phosphorylated species of Ire1 and assess their effects on RNase splicing both in vitro and in vivo. We find that phosphorylation within the kinase activation loop significantly increases RNase splicing in vitro. Correspondingly, mutants of Ire1 that cannot be phosphorylated on the activation loop show decreased specific Xbp1 and promiscuous RNase splicing activity relative to wild-type Ire1 in cells. These data couple the kinase phosphorylation reaction to the activation state of the RNase, suggesting that phosphorylation of the activation loop is an important step in Ire1-mediated UPR activation.

Journal article

Carrara M, Prischi F, Ali MMU, 2013, UPR Signal Activation by Luminal Sensor Domains, Int. j. Mol. Sci., Vol: 14

Journal article

Maruf MUATBELDPRNMCS-SAHCMMGRGJMWAICFEDALHP, 2011, Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response, EMBO J, Vol: 30, Pages: 894-905

Journal article

Millson SH, Vaughan CK, Zhai C, Ali MM, Panaretou B, Piper PW, Pearl LH, Prodromou Cet al., 2008, Chaperone ligand-discrimination by the TPR-domain protein Tah1, Biochem J, Pages: 261-268

Journal article

Buchanan SK, Lukacik P, Grizot S, Ghirlando R, Ali MMU, Barnard TJ, Jakes KS, Kienker PK, Esser Let al., 2007, Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import, EMBO Journal, Pages: 2594-2604

Journal article

Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MMU, Prodromou C, Robinson CV, Saibil HR, Pearl LHet al., 2006, Structure of an Hsp90-Cdc37-Cdk4 complex, MOLECULAR CELL, Vol: 23, Pages: 697-707, ISSN: 1097-2765

Journal article

Ali MMU, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LHet al., 2006, Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex, NATURE, Vol: 440, Pages: 1013-1017, ISSN: 0028-0836

Journal article

Roe SM, Ali MMU, Meyer P, Vaughan CK, Panaretou B, Piper PW, Prodromou C, Pearl LHet al., 2004, The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37), CELL, Vol: 116, Pages: 87-98, ISSN: 0092-8674

Journal article

Shehata HA, Ali MM, Evans-Jones JC, Upton GJ, Manyonda ITet al., 1998, Red cell distribution width (RDW) changes in pregnancy., Int J Gynaecol Obstet, Vol: 62, Pages: 43-46, ISSN: 0020-7292

OBJECTIVE: As part of an exercise in establishing normograms of hematological parameters in pregnancy, we studied the red cell distribution width (RDW) in healthy pregnant women. METHODS: A longitudinal study of RDW measurements in 121 pregnant women at 16 and 34 weeks gestation and during labor and at Days 3 and 7 postpartum. All the women had uncomplicated pregnancies, minimum hemoglobin (Hb) of 11.0 g/dl at recruitment and took iron supplements from 16 weeks of gestation and until 7 days after delivery. All subjects went into spontaneous labor, 110 achieving a normal vaginal delivery while the remaining 11 were delivered by cesarean section. Two-way analysis of variance was used to study the changes in RDW between any given gestations to test the variability between and within subjects. RESULTS: RDW increased significantly (P < 0.0001) between 34 weeks of gestation and the onset of labor. No significant changes occurred between 16 and 34 weeks gestation, or during the 7 days postpartum. CONCLUSION: This is the first longitudinal study analyzing the between and within women changes in RDW with progression of pregnancy. The unexpected rise in the RDW during the last 4-6 weeks leading up to the onset of labor suggests increased bone marrow activity. The stimulus is unknown, but as RDW changes are highly significant there may well be a useful indicator of impending parturition.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00624765&limit=30&person=true