Imperial College London


Faculty of EngineeringDepartment of Chemical Engineering

Research Assistant







432Bone BuildingSouth Kensington Campus





Publication Type

2 results found

Olympios A, Hoisenpoori P, Mersch M, Pantaleo A, Simpson M, Sapin P, Mac Dowell N, Markides Cet al., 2020, Optimal design of low-temperature heat-pumping technologies and implications to the whole energy system, The 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.

This paper presents a methodology for identifying optimal designs for air-source heat pumps suitable for domestic heating applications from the whole-energy system perspective, accounting explicitly for a trade-off between cost and efficiency, as well as for the influence of the outside air temperature during off-design operation. The work combines dedicated brazed-plate and plate-fin heat-exchanger models with compressor efficiency maps, as well as equipment costing techniques, in order to develop a comprehensive technoeconomic model of a low-temperature air-source heat pump with a single-stage-compressor, based on the vapour-compression cycle. The cost and performance predictions are validated against manufacturer data and a non-linear thermodynamic optimisation model is developed to obtain optimal component sizes for a set of competing working fluids and design conditions. The cost and off-design performance of different configurations are integrated into a whole-energy system capacity-expansion and unit-dispatch model of the UK power and heat system. The aim is to assess the system value of proposed designs, as well as the implications of their deployment on the power generation mix and total transition cost of electrifying domestic heat in the UK as a pathway towards meeting a national net-zero emission target by 2050. Refrigerant R152a appears to have the best design and off-design performance, especially compared to the commonly used R410a. The size of the heat exchangers has a major effect on heat pump performance and cost. From a wholesystem perspective, high-performance heat pumps enable a ~20 GW (~10%) reduction in the required installed power generation capacity compared to smaller-heat-exchanger, low-performance heat pumps, which in turn requires lower and more realistic power-grid expansion rates. However, it is shown that the improved performance as a result of larger heat exchangers does not compensate overall for the increased technology cost, with

Conference paper

Sapin P, Simpson M, Olympios A, Mersch M, Markides Cet al., 2020, Cost-benefit analysis of reversible reciprocating-piston engines with adjustable volume ratio in pumped thermal electricity storage, 33rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2020), Publisher: ECOS

Decarbonisation of heating, cooling and/or power services through the utilisation of renewable en-ergy sources relies on the development of efficient and economically-viable energy storage technolo-gies, ideally without geographical constraints. Pumped thermal electricity storage (PTES) is a strongcandidate technology – along with reversible Rankine cycle, (advanced adiabatic) compressed airenergy storage (CAES), and liquid air energy storage (LAES). One of the leading PTES variants isthe reversible Joule-Brayton cycle engine, where energy is stored as sensible heat in hot and coldthermal stores, while the temperature difference is achieved through gas compression and expansionprocesses. For cost reasons, and to achieve high round-trip efficiencies, it is advantageous for thecompression and expansion machines used in PTES plants to be reversible. Positive-displacementdevices offer this possibility. In particular, recent developments in pneumatically or electromagneti-cally actuated intake and exhaust valves could pave the way for high-efficiency reversible reciprocat-ing compression-expansion devices based on variable-valve control in real time. Advanced variablevalve timing (VVT) is a promising feature that allows piston machines not only to be operated bothas reversible compression and expansion devices, but also to maintain high efficiencies over a widerange of operating conditions, thanks to the possibility of adjusting the built-in volume ratio of a par-ticular machine. With enhanced part-load performance, such disruptive piston machines offer greatpotential for round-trip efficiency enhancement and cost minimisation of PTES storage plants. In thiswork, a cost-benefit analysis of innovative VVT-fitted reciprocating-piston technology is performedusing: (i) comprehensive dynamic reduced-order models to predict the compressor-expander perfor-mance for design optimisation, and (ii) Schumann-style one-dimensional models for simulating heatand mass transf

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01665270&limit=30&person=true