Imperial College London


Faculty of EngineeringDepartment of Mechanical Engineering

Senior Lecturer



+44 (0)20 7594 7091monica.marinescu Website




722Mechanical EngineeringSouth Kensington Campus





I am interested in understanding how physical and chemical processes impact the behaviour of energy storage devices in applications. This involves identifying the mechanisms that limit behaviour under real conditions, which I do by building electrochemical and physical models. I use experimentally observed behaviour to parametrise and validate these models, and use them further to explore ways in which their performance can be improved. I also synthesise this knowledge into reduced order models, which can be used for control algorithms in a given application.

I am working on lithium ion batteries, lithium sulfur batteries, supercapacitors and Li-ion capacitors.



Li S, Kirkaldy N, Zhang C, et al., 2021, Optimal cell tab design and cooling strategy for cylindrical lithium-ion batteries, Journal of Power Sources, Vol:492, ISSN:0378-7753, Pages:1-16

Robinson J, Xi K, Kumar RV, et al., 2021, 2021 roadmap on lithium sulfur batteries, Journal of Physics: Energy, Vol:3, ISSN:2515-7655

Ghosh A, Foster JM, Offer G, et al., 2021, A Shrinking-Core Model for the Degradation of High-Nickel Cathodes (NMC811) in Li-Ion Batteries: Passivation Layer Growth and Oxygen Evolution, Journal of the Electrochemical Society, Vol:168, ISSN:0013-4651

Hua X, Heckel C, Modrow N, et al., 2021, The prismatic surface cell cooling coefficient: A novel cell design optimisation tool & thermal parameterization method for a 3D discretised electro-thermal equivalent-circuit model, Etransportation, Vol:7, ISSN:2590-1168, Pages:1-15

Pang M-C, Wei Y, Wang H, et al., 2021, Large-format bipolar and parallel solid-state lithium-metal cell stacks: a thermally coupled model-based comparative study, Journal of the Electrochemical Society, Vol:167, ISSN:0013-4651, Pages:1-23

More Publications