Imperial College London

ProfessorNeilAlford

Central FacultyOffice of the Provost

Associate Provost (Academic Planning)
 
 
 
//

Contact

 

+44 (0)20 7594 6724n.alford

 
 
//

Assistant

 

Miss Catherine Graham +44 (0)20 7594 3330

 
//

Location

 

2..05 (in RSM) or 3.09 (in the Faculty Building)Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

402 results found

Le Goupil F, Baker A, Tonus F, Berenov A, Randall CA, Alford NMet al., 2019, Direct measurement of electrocaloric effect in lead-free (Na0.5Bi0.5)TiO3-based multilayer ceramic capacitors, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, Vol: 39, Pages: 3315-3319, ISSN: 0955-2219

Journal article

Doiron B, Li Y, Mihai A, Bower R, Alford NM, Petrov PK, Maier SA, Oulton RFet al., 2019, Plasmon-enhanced electron harvesting in robust titanium nitride nanostructures, The Journal of Physical Chemistry Part C: Nanomaterials and Interfaces, Vol: 123, Pages: 18521-18527, ISSN: 1932-7447

Titanium nitride (TiN) continues to prove itself as an inexpensive, robust, and efficient alternative to gold in plasmonic applications. Notably, TiN has improved hot electron-harvesting and photocatalytic abilities compared to gold systems, which we recently attributed to the role of oxygen in TiN and its native semiconducting TiO2–x surface layer. Here, we explore the role of localized surface plasmon resonances (LSPRs) on electron harvesting across the TiN/TiO2–x interface and probe the resilience of TiN nanostructures under high-power laser illumination. To investigate this, we fabricate TiN strips, in which the lateral confinement allows for the polarization-selective excitation of the LSPR. Using ultrafast pump–probe spectroscopy, optical characterization, and Raman vibrational spectroscopy, we relate the differences and changes observed in the electron behavior to specific material properties. We observe plasmon-enhanced electron harvesting beyond what is expected resulting from the enhanced absorption of the plasmonic mode. We accredit this to the surface oxide damping the plasmon resonance, providing additional nonradiative loss channels. Subsequently, we show that low-power annealing of the surface oxide layer reduces the trap density at the interface and increases the initial harvested electron concentration. The unique properties of TiN make it important in the future development of plasmonic electron-harvesting applications.

Journal article

Pang JS, Theodorou IG, Centeno A, Petrov PK, Alford NM, Ryan MP, Xie Fet al., 2019, Tunable three-dimensional plasmonic arrays for large near-infrared fluorescence enhancement, ACS Applied Materials & Interfaces, Vol: 11, Pages: 23083-23092, ISSN: 1944-8244

Metal-enhanced fluorescence (MEF), resulting from the near-field interaction of fluorophores with metallic nanostructures, has emerged as a powerful tool for dramatically improving the performance of fluorescence-based biomedical applications. Allowing for lower autofluorescence and minimal photoinduced damage, the development of multifunctional and multiplexed MEF platforms in the near-infrared (NIR) windows is particularly desirable. Here, a low-cost fabrication method based on nanosphere lithography is applied to produce tunable three-dimensional (3D) gold (Au) nanohole–disc arrays (Au-NHDAs). The arrays consist of nanoscale glass pillars atop nanoholes in a Au thin film: the top surfaces of the pillars are Au-covered (effectively nanodiscs), and small Au nanoparticles (nanodots) are located on the sidewalls of the pillars. This 3D hole–disc (and possibly nanodot) construct is critical to the properties of the device. The versatility of our approach is illustrated through the production of uniform and highly reproducible Au-NHDAs with controlled structural properties and tunable optical features in the NIR windows. Au-NHDAs allow for a very large NIR fluorescence enhancement (more than 400 times), which is attributed to the 3D plasmonic structure of the arrays that allows strong surface plasmon polariton and localized surface plasmon resonance coupling through glass nanogaps. By considering arrays with the same resonance peak and the same nanodisc separation distance, we show that the enhancement factor varies with nanodisc diameter. Using computational electromagnetic modeling, the electric field enhancement at 790 nm was calculated to provide insights into excitation enhancement, which occurs due to an increase in the intensity of the electric field. Fluorescence lifetime measurements indicate that the total fluorescence enhancement may depend on controlling excitation enhancement and therefore the array morphology. Our findings provide important in

Journal article

Doiron B, Mota M, Wells MP, Bower R, Mihai A, Li Y, Cohen LF, Alford NM, Petrov PK, Oulton RF, Maier SAet al., 2019, Quantifying figures of merit for localized surface plasmon resonance applications: a materials survey, ACS Photonics, Vol: 6, Pages: 240-259, ISSN: 2330-4022

Using localized surface plasmon resonances (LSPR) to focus electromagnetic radiation to the nanoscale shows the promise of unprecedented capabilities in optoelectronic devices, medical treatments and nanoscale chemistry, due to a strong enhancement of light-matter interactions. As we continue to explore novel applications, we require a systematic quantitative method to compare suitability across different geometries and a growing library of materials. In this work, we propose application-specific figures of merit constructed from fundamental electronic and optical properties of each material. We compare 17 materials from four material classes (noble metals, refractory metals, transition metal nitrides, and conductive oxides) considering eight topical LSPR applications. Our figures of merit go beyond purely electromagnetic effects and account for the materials’ thermal properties, interactions with adjacent materials, and realistic illumination conditions. For each application we compare, for simplicity, an optimized spherical antenna geometry and benchmark our proposed choice against the state-of-the-art from the literature. Our propositions suggest the most suitable plasmonic materials for key technology applications and can act as a starting point for those working directly on the design, fabrication, and testing of such devices.

Journal article

Axelsson A-K, Le Goupil F, Valant M, Alford NMet al., 2018, Optimisation of SrBi2(Nb,Ta)(2)O-9 Aurivillius phase for lead-free electrocaloric cooling, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, Vol: 38, Pages: 5354-5358, ISSN: 0955-2219

Journal article

Wells M, Bower R, Kilmurray B, Zou B, Mihai AP, GOBALAKRICHENANE G, Alford NM, Oulton RFM, Cohen L, Maier SA, ZAYATS A, Petrov PKet al., 2018, Temperature stability of thin film refractory plasmonic materials, Optics Express, Vol: 12, Pages: 15726-15744, ISSN: 1094-4087

Materials such as W, TiN, and SrRuO3 (SRO) have been suggested as promising alternatives to Au and Ag in plasmonic applications owing to their stability at high operational temperatures. However, investigation of the reproducibility of the optical properties after thermal cycling between room and elevated temperatures is so far lacking. Here, thin films of W, Mo, Ti, TiN, TiON, Ag, Au, SrRuO3 and SrNbO3 are investigated to assess their viability for robust refractory plasmonic applications. These results are further compared to the performance of SrMoO3 reported in literature. Films ranging in thickness from 50 to 105 nm are deposited on MgO, SrTiO3 and Si substrates by e-beam evaporation, RF magnetron sputtering and pulsed laser deposition, prior to characterisation by means of AFM, XRD, spectroscopic ellipsometry, and DC resistivity. Measurements are conducted before and after annealing in air at temperatures ranging from 300 to 1000° C for one hour, to establish the maximum cycling temperature and potential longevity at elevated temperatures for each material. It is found that SrRuO3 retains metallic behaviour after annealing at 800° C, while SrNbO3 undergoes a phase transition resulting in a loss of metallic behaviour after annealing at 400° C. Importantly, the optical properties of TiN and TiON are degraded as a result of oxidation and show a loss of metallic behaviour after annealing at 500° C, while the same is not observed in Au until annealing at 600° C. Nevertheless, both TiN and TiON may be better suited than Au or SRO for high temperature applications operating under vacuum conditions.

Journal article

Petrov PK, Wells M, Zou B, Mihai A, Bower R, Doiron B, Regoutz A, Fearn S, Maier S, Alford Net al., 2018, Multiphase strontium molybdate thin films for plasmonic local heating applications, Optical Materials Express, Vol: 8, Pages: 1806-1817, ISSN: 2159-3930

In the search for alternative plasmonic materials SrMoO3 has recently been identified as possessing a number of desirable optical properties. Owing to the requirement for many plasmonic devices to operate at elevated temperatures however, it is essential to characterize the degradation of these properties upon heating. Here, SrMoO3 thin films are annealed in air at temperatures ranging from 75 - 500{\deg} C. Characterizations by AFM, XRD, and spectroscopic ellipsometry after each anneal identify a loss of metallic behaviour after annealing at 500{\deg} C, together with the underlying mechanism. Moreover, it is shown that by annealing the films in nitrogen following deposition, an additional crystalline phase of SrMoO4 is induced at the film surface, which suppresses oxidation at elevated temperatures.

Journal article

Breeze JD, Salvadori E, Sathian J, Alford NM, Kay CWMet al., 2018, Continuous-wave room-temperature diamond maser, Nature, Vol: 555, Pages: 493-496, ISSN: 0028-0836

The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host1,2,3 paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond4,5,6 and silicon carbide7, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.

Journal article

Ptashnik SV, Mikhailov AK, Yastrebov AV, Petrov PK, Liu W, Alford N, Hirsch S, Kozyrev ABet al., 2017, Ferroelectric thin film acoustic devices with electrical multiband switching ability, Scientific Reports, Vol: 7, ISSN: 2045-2322

Design principles of a new class of microwave thin film bulk acoustic resonators with multiband resonance frequency switching ability are presented. The theory of the excitation of acoustic eigenmodes in multilayer ferroelectric structures is considered, and the principle of selectivity for resonator with an arbitrary number of ferroelectric layers is formulated. A so called “criterion function” is suggested that allows to determine the conditions for effective excitation at one selected resonance mode with suppression of other modes. The proposed theoretical approach is verifiedusing thepreexisting experimental data published elsewhere. Finally, the possible application of the two ferroelectric layers structures for switchable microwave overtone resonators, binary and quadrature phase-shift keying modulators are discussed. These devices could play a pivotal role in the miniaturization of microwave front-end antenna circuits.

Journal article

Breeze JDB, Salvadori E, Sathian J, Alford N, Kay CWMet al., 2017, Room-temperature cavity quantum electrodynamics with strongly-coupled Dicke states, npj Quantum Information, Vol: 3, ISSN: 2056-6387

The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin–photon coupling can be enhanced by N−−√N through collective spin excitations known as Dicke states. For sufficiently large N the collective spin–photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N ~ 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T∗2~3T2*~3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm~0.25Vm~0.25 cm3, Q ~ 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin–photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

Journal article

Wells MP, Zou B, Doiron BG, Kilmurray R, Mihai AP, Oulton RF, Gubeljak P, Ormandy K, Mallia G, Harrison N, Cohen LF, Maier S, Petrov PKet al., 2017, Tunable, Low Optical Loss Strontium Molybdate Thin Films for Plasmonic Applications, Advanced Optical Materials, Vol: 5, ISSN: 2195-1071

Strontium molybdate (SrMoO3) thin films are grown epitaxially on strontium titanate (SrTiO3), magnesium oxide (MgO), and lanthanum aluminate (LaAlO3) substrates by pulsed laser deposition and possess electrical resistivity as low as 100 µΩ cm at room temperature. SrMoO3 is shown to have optical losses, characterized by the product of the Drude broadening, ΓD, and the square of the plasma frequency, ωpu2, significantly lower than TiN, though generally higher than Au. Also, it is demonstrated that there is a zero-crossover wavelength of the real part of the dielectric permittivity, which is between 600 and 950 nm (2.05 and 1.31 eV), as measured by spectroscopic ellipsometry. Moreover, the epsilon near zero (ENZ) wavelength can be controlled by engineering the residual strain in the films, which arises from a strain dependence of the charge carrier concentration, as confirmed by density of states calculations. The relatively broad tunability of ENZ behavior observed in SrMoO3 demonstrates its potential suitability for transformation optics along with plasmonic applications in the visible to near infrared spectral range.

Journal article

Doiron B, Li Y, Mihai AP, Cohen LF, Pretrov PK, Alford NM, Oulton RF, Maier SAet al., 2017, Comparison of the ultrafast hot electron dynamics of titanium nitride and gold for plasmonic applications, SPIE Optics + Photonics Conference on Plasmonics - Design, Materials, Fabrication, Characterization, and Applications XV, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

With similar optical properties to gold and high thermal stability, titanium nitride continues to prove itself as a promising plasmonic material for high-temperature applications in the visible and near-infrared. In this work, we use transient pump probe differential reflection measurements to compare the electron energy decay channels in titanium nitride and gold thin films. Using an extended two temperature model to incorporate the photoexcited electrons, it is possible to separate the electron-electron and electron-phonon scattering contributions immediately following the arrival of the pump pulse. This model allows for incredibly accurate determination of the internal electronic properties using only optical measurements. As the electronic properties are key in hot electron applications, we show that titanium nitide has substantially longer electron thermalization and electron-phonon scattering times. With this, we were also able to resolve electron thermal conduction in the film using purely optical measurements.

Conference paper

Braic L, Vasilantonakis N, Mihai A, Villar-Garcia I, Fearn S, Zou B, Alford N, Doiron B, Oulton R, Maier S, Zayats A, Petrov Pet al., 2017, Titanium oxynitride thin films with tuneable double epsilon-near-zero behaviour for nanophotonic applications, ACS Applied Materials and Interfaces, Vol: 9, Pages: 29857-29862, ISSN: 1944-8244

Titanium oxynitride (TiOxNy) thin films are fabricated using reactive magnetron sputtering. The mechanism of their growth formation is explained, and their optical properties are presented. The films grown when the level of residual oxygen in the background vacuum was between 5 nTorr to 20 nTorr exhibit double epsilon-near-Zero (2-ENZ) behavior with ENZ1 and ENZ2 wavelengths tunable in the 700–850 and 1100–1350 nm spectral ranges, respectively. Samples fabricated when the level of residual oxygen in the background vacuum was above 2 × 10–8 Torr exhibit nonmetallic behavior, while the layers deposited when the level of residual oxygen in the background vacuum was below 5 × 10–9 Torr show metallic behavior with a single ENZ value. The double ENZ phenomenon is related to the level of residual oxygen in the background vacuum and is attributed to the mixture of TiN and TiOxNy and TiOx phases in the films. Varying the partial pressure of nitrogen during the deposition can further control the amount of TiN, TiOx, and TiOxNy compounds in the films and, therefore, tune the screened plasma wavelengths. A good approximation of the ellipsometric behavior is achieved with Maxwell–Garnett theory for a composite film formed by a mixture of TiO2 and TiN phases suggesting that double ENZ TiOxNy films are formed by inclusions of TiN within a TiO2 matrix. These oxynitride compounds could be considered as new materials exhibiting double ENZ in the visible and near-IR spectral ranges. Materials with ENZ properties are advantageous for designing the enhanced nonlinear optical response, metasurfaces, and nonreciprocal behavior.

Journal article

Sathian J, Breeze J, Richards B, Alford N, Oxborrow Met al., 2017, Solid-state source of intense yellow light based on a Ce:YAG luminescent concentrator, Optics Express, Vol: 25, Pages: 13714-13727, ISSN: 1094-4087

A luminescent concentrator functioning as a bright source of yellow light is reported. It comprises a waveguide made of cerium-doped YAG crystal, in the form of a long-thin rectangular strip, surrounded by flowing air and optically pumped from both sides with blue light from arrays of high-efficiency InGaN LEDs. Phosphor-converted yellow light, generated within the strip, is guided to a glass taper that is butt-coupled to one of the strip’s end faces. Up to 20 W of optical power, centered on 575 nm with a linewidth of 76 nm, can be continuously radiated into air from the taper’s 1.67 mm × 1.67 mm square output aperture. The intensity of the outputted light is significantly greater than what any yellow (AlGaInP) LED can directly produce (either singly or arrayed), with only a modest increase in linewidth. Furthermore, the wall-plug efficiency of the source exceeds that of any yellow laser. The concept allows for further substantial increases in intensity, total output power and wall-plug efficiency through scaling-up and engineering refinements.

Journal article

Salvadori E, Breeze JD, Tan K-J, Sathian J, Richards B, Fung MW, Wolfowicz G, Oxborrow M, Alford NM, Kay CWMet al., 2017, Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER, Scientific Reports, Vol: 7, ISSN: 2045-2322

The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule.

Journal article

Pang J, Theodorou I, Centeno A, Petrov P, Alford N, Ryan M, Xie Fet al., 2016, Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors, Journal of Materials Chemistry C, Vol: 5, Pages: 917-925, ISSN: 2050-7534

Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

Journal article

Axelsson A-K, Le Goupil F, Valant M, Alford NMet al., 2016, Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics, ACTA MATERIALIA, Vol: 124, Pages: 120-126, ISSN: 1359-6454

Journal article

Liu G, Feng H, Liu B, Wang Y, Liu W, Zou B, Alford NM, Petrov PKet al., 2016, Formation of V-grooves in SrRuO3 epitaxial film, Journal of Crystal Growth, Vol: 455, Pages: 13-18, ISSN: 0022-0248

SrRuO3 thin films were epitaxially grown on a (001) SrTiO3 substrate using pulsed laser deposition technique. Various defects such as V-grooves, threading dislocations and dislocation dipoles are observed in the SrRuO3 epitaxial film. It is found that the sidewalls of most V-grooves are {101} facets, and the dominant angle between the sidewalls is 90°. Some threading dislocations end at the apexes of the V-grooves while the others penetrate the entire film. The threading dislocations and V-grooves can partially relieve the strain in the epitaxial SrRuO3 film. During the relaxation process, a two-dimensional growth mode transforms into a three-dimensional one, along with the formation of mesa-like islands separated by V-grooves. The dimensions and distributions of V-grooves are associated with the growth conditions. The control of growth mechanism and surface morphology are very important for the fabrication of novel perovskite oxide devices.

Journal article

Petrov PK, Zou B, Walker C, Wang K, Tileli V, Shaforost O, Harrison N, Klein N, Alford Net al., 2016, Growth of Epitaxial Oxide Thin Films on Graphene, Scientific Reports, Vol: 6, ISSN: 2045-2322

The transfer process of graphene onto the surface of oxide substrates is well known.However, for many devices, we require high quality oxide thin films on the surface ofgraphene. This step is not understood. It is not clear why the oxide should adopt theepitaxy of the underlying oxide layer when it is deposited on graphene where there isno lattice match. To date there has been no explanation or suggestion of mechanismswhich clarify this step. Here we show a mechanism, supported by first principlessimulation and structural characterisation results, for the growth of oxide thin films ongraphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a grapheneand show that local defects in the graphene layer (e.g. grain boundaries) act as bridgepillarspots that enable the epitaxial growth of STO thin films on the surface of thegraphene layer. This study, and in particular the suggestion of a mechanism forepitaxial growth of oxides on graphene, offers new directions to exploit thedevelopment of oxide/graphene multilayer structures and devices.

Journal article

Niedermeier CA, Råsander M, Rhode S, Kachkanov V, Zou B, Alford N, Moram MAet al., 2016, Band gap bowing in NixMg1-xO., Scientific Reports, Vol: 6, ISSN: 2045-2322

Epitaxial transparent oxide NixMg1-xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1-xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x < 0.037. Density functional calculations of the NixMg1-xO band structure and the density of states demonstrate that deep Ni 3d levels are introduced into the MgO band gap, which significantly reduce the fundamental gap as confirmed by optical absorption spectra. These states broaden into a Ni 3d-derived conduction band for x > 0.074 and account for the anomalously large band gap narrowing in the NixMg1-xO solid solution system.

Journal article

Liu G, Wang Y, Zou B, Liang W, Alford NM, McComb DW, Petrov PKet al., 2016, Probing the Electronic Structures of BaTiO3/SrTiO3 Multilayered Film with Spatially Resolved Electron Energy-Loss Spectroscopy, Journal of Physical Chemistry C, Vol: 120, Pages: 16681-16686, ISSN: 1932-7455

A multilayered film of BaTiO3/SrTiO3 was grown on a LaAlO3 substrate using dual-target pulsed laser deposition technique. High-resolution scanning transmission electron microscopy observations show that the nine unit-cell BaTiO3 layer and the three unit-cell SrTiO3 layer are alternatively arranged in the epitaxial film where a sharp interface exists between the BaTiO3 and SrTiO3 layers. Electron energy-loss spectroscopy analysis demonstrates that the O-K edge spectra of SrTiO3 and BaTiO3 layers are quite distinct; in particular, the energy-loss peak at 547 eV in the SrTiO3 spectrum splits into two peaks in the BaTiO3 spectrum. The multiple-scattering calculations of O-K edge spectra for BaTiO3 and SrTiO3 agree well with the experimental results. The low-energy region (<542 eV) of the O-K edge spectra for both BaTiO3 and SrTiO3 is mainly caused by the hybridization of the O 2p with Ti 3d orbitals. The splitting peaks between 542 and 552 eV in the O-K edge spectra of BaTiO3 are attributed to its complex crystal structure including two unequal oxygen sites and low site symmetry.

Journal article

Berenov AV, Le Goupil F, Alford N, 2016, Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds, Scientific Reports, Vol: 6, ISSN: 2045-2322

A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.

Journal article

Le Goupil F, McKinnon R, Koval V, Viola G, Dunn S, Berenov A, Yan H, Alford NMet al., 2016, Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics, Scientific Reports, Vol: 6, ISSN: 2045-2322

The need for more energy-efficient and environmentally-friendly alternatives in the refrigeration industry to meet Global emission targets has driven efforts towards materials with a potential for solid state cooling. Adiabatic depolarisation cooling, based on the electrocaloric effect (ECE), is a significant contender for efficient new solid state refrigeration techniques. Some of the highest ECE performances reported are found in compounds close to the morphotropic phase boundary (MPB). This relationship between performance and the MPB makes the ability to tune the position of the MPB an important challenge in electrocaloric research. Here, we report direct ECE measurements performed on MPB tuned NBT-06BT bulk ceramics with a combination of A-site substitutions. We successfully shift the MPB of these lead-free ceramics closer to room temperature, as required for solid state refrigeration, without loss of the criticality of the system and the associated ECE enhancement.

Journal article

Le Goupil F, Alford NM, 2016, Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics, APL Materials, Vol: 4, ISSN: 2166-532X

The electrocaloric effect (ECE) of two compositions (x = 0.06 and 0.07) of (1 − x)(Na0.5Bi0.5)TiO3-xKNbO3 in the vicinity of the morphotropic phase boundary is studied by direct measurements. ΔTmax = 1.5 K is measured at 125 °C under 70 kV/cm for NBT-6KN while ΔTmax = 0.8 K is measured at 75 °C under 55 kV/cm for NBT-7KN. We show that the “shoulder,” TS, in the dielectric permittivity, marks the upper limit of the ECE peak under high applied electric fields. These results imply that the range of temperature with high ECE can be quickly identified for a given composition, which will significantly speed up the process of materials selection for ECE cooling.

Journal article

Zhang X, Wu X, Centeno A, Ryan M, alford N, riley D, Xie Fet al., 2016, Significant broadband photocurrent enhancement by Au-CZTS core-shell nanostructured photocathodes, Scientific Reports, Vol: 6, ISSN: 2045-2322

Copper zinc tin sulfide (CZTS) is a promising material for harvesting solar energy due to its abundance and non-toxicity. However, its poor performance hinders their wide application. In this paper gold (Au) nanoparticles are successfully incorporated into CZTS to form Au@CZTS core-shell nanostructures. The photocathode of Au@CZTS nanostructures exhibits enhanced optical absorption characteristics and improved incident photon-to-current efficiency (IPCE) performance. It is demonstrated that using this photocathode there is a significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 100% compared to using a CZTS without Au core. More importantly, the PCE of Au@CZTS photocathode improved by 15.8% compared to standard platinum (Pt) counter electrode. The increased efficiency is attributed to plasmon resonance energy transfer (PRET) between the Au nanoparticle core and the CZTS shell at wavelengths shorter than the localized surface plasmon resonance (LSPR) peak of the Au and the semiconductor bandgap.

Journal article

Sanlialp M, Shvartsman VV, Acosta M, Lupascu DCet al., 2016, Electrocaloric Effect in Ba(Zr,Ti)O<inf>3</inf>–(Ba,Ca)TiO<inf>3</inf> Ceramics Measured Directly, Journal of the American Ceramic Society, Vol: 99, Pages: 4022-4030, ISSN: 0002-7820

© 2016 The American Ceramic Society In this paper, we report on studies of the electrocaloric (EC) effect in lead-free (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ceramics with compositions range between 0.32 ≤ x ≤ 0.45. The EC effect was measured directly using a modified differential scanning calorimeter. The maximum EC temperature change, ΔTdirect = 0.33 K under an electric field of 2 kV/mm, was observed for the composition with x = 0.32 at ~63°C. We found that the EC effect peaks not only around the Curie temperature but also at the transition between the ferroelectric phases with different symmetries. A strong discrepancy observed between the results of the direct measurements and indirect estimations points out that using Maxwell's equations is invalid for the thermodynamic nonequilibrium conditions that accompany only partial (incomplete) poling of ceramics. We also observe a nonlinearity of the EC effect above the Curie temperature and in the temperature range corresponding to the tetragonal ferroelectric phase.

Journal article

Le Goupil F, Bennett J, Axelsson A-K, Valant M, Berenov A, Bell AJ, Comyn TP, Alford NMet al., 2015, Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics, Applied Physics Letters, Vol: 107, ISSN: 1077-3118

The electrocaloric effects (ECEs) of the morphotropic phase boundary (MPB) composition 0.82(Na0.5Bi0.5)TiO3-0.18(K0.5Bi0.5)TiO3 (NBT-18KBT) are studied by direct measurements. The maximum ECE ΔTmax = 0.73 K is measured at 160 °C under 22 kV/cm. This corresponds to an ECE responsivity (ΔT/ΔE) of 0.33 × 10−6 K m/V, which is comparable with the best reported values for lead-free ceramics. A comparison between the direct and indirect ECE measurements shows significant discrepancies. The direct measurement of both positive and negative electrocaloric effect confirms the presence of numerous polar phases near the MPB of NBT-based materials and highlights their potential for solid-state cooling based on high field-induced entropy changes.

Journal article

Wu X, Zhang X, Price D, Ryan M, Riley J, Alford N, Centeno A, Xie Fet al., 2015, Broadband plasmon photocurrent generation from Au nanoparticles/ mesoporous TiO2 nanotube electrodes, Solar Energy Materials and Solar Cells, Vol: 138, Pages: 80-85, ISSN: 0927-0248

There has been an increasing interest in plasmon-induced enhancement of solar cells and more recently in the direct generation of photocurrent using noble metal nanoparticles with their Localised Surface Plasmon Resonance (LSPR) in the visual part of the spectrum. In this paper we report broadband plasmon photocurrent generation using novel Au nanoparticle incorporated mesoporous TiO2 nanotube electrodes. Plasmonic induced photocurrent due to hot electrons is observed over a broad wavelength range (~500 to 1000 nm). Incident photon-to-electron conversion efficiency (IPCE) measurements undertaken showed a maximum photocurrent enhancement of 200 fold around 700–730 nm wavelength.

Journal article

Braic L, Vasilantonakis N, Zou B, Maier SA, Alford NM, Zayats AV, Petrov PKet al., 2015, Optimizing strontium ruthenate thin films for near-infrared plasmonic applications, Scientific Reports, Vol: 5, ISSN: 2045-2322

Several new plasmonic materials have recently been introduced in order to achieve better temperature stability than conventional plasmonic metals and control field localization with a choice of plasma frequencies in a wide spectral range. Here, epitaxial SrRuO3 thin films with low surface roughness fabricated by pulsed laser deposition are studied. The influence of the oxygen deposition pressure (20–300 mTorr) on the charge carrier dynamics and optical constants of the thin films in the near-infrared spectral range is elucidated. It is demonstrated that SrRuO3 thin films exhibit plasmonic behavior of the thin films in the near-infrared spectral range with the plasma frequency in 3.16–3.86 eV range and epsilon-near-zero wavelength in 1.11–1.47 μm range that could be controlled by the deposition conditions. The possible applications of these films range from the heat-generating nanostructures in the near-infrared spectral range, to metamaterial-based ideal absorbers and epsilon-near-zero components, where the interplay between real and imaginary parts of the permittivity in a given spectral range is needed for optimizing the spectral performance.

Journal article

Roqan IS, Venkatesh S, Zhang Z, Hussain S, Bantounas I, Franklin JB, Flemban TH, Zou B, Lee J-S, Schwingenschlogl U, Petrov PK, Ryan MP, Alford NMet al., 2015, Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes, Journal of Applied Physics, Vol: 117, ISSN: 1089-7550

We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline Gdx Zn 1−xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00506609&limit=30&person=true&page=1&respub-action=search.html