Imperial College London

Dr Nick Brooks

Faculty of Natural SciencesDepartment of Chemistry

Reader in Membrane Biophysics
 
 
 
//

Contact

 

+44 (0)20 7594 2677n.brooks Website

 
 
//

Location

 

207JMolecular Sciences Research HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

106 results found

Holme MN, Rana S, Barriga H, Kauscher U, Brooks NJ, Stevens MMet al., 2018, A robust liposomal platform for direct colorimetric detection of sphingomyelinase enzyme and inhibitors, ACS Nano, Vol: 12, Pages: 8197-8207, ISSN: 1936-0851

The enzyme sphingomyelinase (SMase) is an important biomarker for several diseases such as Niemann Pick’s, atherosclerosis, multiple sclerosis, and HIV. We present a two-component colorimetric SMase activity assay that is more sensitive and much faster than currently available commercial assays. Herein, SMase-triggered release of cysteine from a sphingomyelin (SM)-based liposome formulation with 60 mol % cholesterol causes gold nanoparticle (AuNP) aggregation, enabling colorimetric detection of SMase activities as low as 0.02 mU/mL, corresponding to 1.4 pM concentration. While the lipid composition offers a stable, nonleaky liposome platform with minimal background signal, high specificity toward SMase avoids cross-reactivity of other similar phospholipases. Notably, use of an SM-based liposome formulation accurately mimics the natural in vivo substrate: the cell membrane. We studied the physical rearrangement process of the lipid membrane during SMase-mediated hydrolysis of SM to ceramide using small- and wide-angle X-ray scattering. A change in lipid phase from a liquid to gel state bilayer with increasing concentration of ceramide accounts for the observed increase in membrane permeability and consequent release of encapsulated cysteine. We further demonstrated the effectiveness of the sensor in colorimetric screening of small-molecule drug candidates, paving the way for the identification of novel SMase inhibitors in minutes. Taken together, the simplicity, speed, sensitivity, and naked-eye readout of this assay offer huge potential in point-of-care diagnostics and high-throughput drug screening.

Journal article

Brooker HR, Gyamfi IA, Wieckowska A, Brooks NJ, Mulvihill DP, Geeves MAet al., 2018, A novel live-cell imaging system reveals a reversible hydrostatic pressure impact on cell-cycle progression, JOURNAL OF CELL SCIENCE, Vol: 131, ISSN: 0021-9533

Journal article

Bolognesi G, Friddin MS, Salehi-Reyhani S, Barlow N, Brooks NJ, Ces O, Elani Yet al., 2018, Sculpting and fusing biomimetic vesicle networks using optical tweezers, Nature Communications, Vol: 9, Pages: 1-11, ISSN: 2041-1723

Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components.

Journal article

Karamdad K, Hindley J, Friddin MS, Bolognesi G, Law RV, Brooks NJ, Ces O, Elani Yet al., 2018, Engineering thermoresponsive phase separated vesicles formed via emulsion phase transfer as a content-release platform, Chemical Science, Vol: 9, Pages: 4851-4858, ISSN: 2041-6520

Giant unilamellar vesicles (GUVs) are a well-established tool for the study of membrane biophysics and are increasingly used as artificial cell models and functional units in biotechnology. This trend is driven by the development of emulsion-based generation methods such as Emulsion Phase Transfer (EPT), which facilitates the encapsulation of almost any water-soluble compounds (including biomolecules) regardless of size or charge, is compatible with droplet microfluidics, and allows GUVs with asymmetric bilayers to be assembled. However, the ability to control the composition of membranes formed via EPT remains an open question; this is key as composition gives rise to an array of biophysical phenomena which can be used to add functionality to membranes. Here, we evaluate the use of GUVs constructed via this method as a platform for phase behaviour studies and take advantage of composition-dependent features to engineer thermally-responsive GUVs. For the first time, we generate ternary GUVs (DOPC/DPPC/cholesterol) using EPT, and by compensating for the lower cholesterol incorporation efficiencies, show that these possess the full range of phase behaviour displayed by electroformed GUVs. As a demonstration of the fine control afforded by this approach, we demonstrate release of dye and peptide cargo when ternary GUVs are heated through the immiscibility transition temperature, and show that release temperature can be tuned by changing vesicle composition. We show that GUVs can be individually addressed and release triggered using a laser beam. Our findings validate EPT as a suitable method for generating phase separated vesicles and provide a valuable proof-of-concept for engineering content release functionality into individually addressable vesicles, which could have a host of applications in the development of smart synthetic biosystems.

Journal article

Slatter DA, Percy CL, Allen-Redpath K, Gajsiewicz JM, Brooks NJ, Clayton A, Tyrrell VJ, Rosas M, Lauder SN, Watson A, Dul M, Garcia-Diaz Y, Aldrovandi M, Heurich M, Hall J, Morrissey JH, Lacroix-Desmazes S, Delignat S, Jenkins PV, Collins PW, O'Donnell VBet al., 2018, Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies, JCI INSIGHT, Vol: 3, ISSN: 2379-3708

Journal article

Barlow NE, Bolognesi G, Haylock S, Flemming AJ, Brooks NJ, Barter LMC, Ces Oet al., 2017, Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress, Scientific Reports, Vol: 7, ISSN: 2045-2322

A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.

Journal article

de Bruin A, Friddin MS, Elani Y, Brooks N, Law R, Seddon J, Ces Oet al., 2017, A transparent 3D printed device for assembling droplet hydrogel bilayers (DHBs), RSC Advances, Vol: 7, Pages: 47796-47800, ISSN: 2046-2069

We report a new approach for assembling droplet hydrogel bilayers (DHBs) using a transparent 3D printed device. We characterise the transparency of our platform, confirm bilayer formation using electrical measurements and show that single-channel recordings can be obtained using our reusable rapid prototyped device. This method significantly reduces the cost and infrastructure required to develop devices for DHB assembly and downstream study.

Journal article

Richens JL, Tyler AII, Barriga HMG, Bramble JP, Law RV, Brooks NJ, Seddon JM, Ces O, O'Shea Pet al., 2017, Spontaneous charged lipid transfer between lipid vesicles, Scientific Reports, Vol: 7, ISSN: 2045-2322

An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are uorescentlylabelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE).Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting ina uorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a rst-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodi ed lipids, continuous monitoring of transfer and simpli ed experimental procedures.

Journal article

Cornell CE, McCarthy NLC, Levental KR, Levental I, Brooks NJ, Keller SLet al., 2017, Lengths of n-alcohols govern how Lo-Ld mixing temperatures shift in synthetic and cell-derived membranes, Biophysical Journal, Vol: 113, Pages: 1-13, ISSN: 1542-0086

A persistent challenge in membrane biophysics has been to quantitatively predict how membrane physical properties change upon addition of new amphiphiles (e.g., lipids, alcohols, peptides, or proteins) in order to assess whether the changes are large enough to plausibly result in biological ramifications. Because of their roles as general anesthetics, n-alcohols are perhaps the best-studied amphiphiles of this class. When n-alcohols are added to model and cell membranes, changes in membrane parameters tend to be modest. One striking exception is found in the large decrease in liquid-liquid miscibility transition temperatures (Tmix) observed when short-chain n-alcohols are incorporated into giant plasma membrane vesicles (GPMVs). Coexisting liquid-ordered and liquid-disordered phases are observed at temperatures below Tmix in GPMVs as well as in giant unilamellar vesicles (GUVs) composed of ternary mixtures of a lipid with a low melting temperature, a lipid with a high melting temperature, and cholesterol. Here, we find that when GUVs of canonical ternary mixtures are formed in aqueous solutions of short-chain n-alcohols (n ≤ 10), Tmix increases relative to GUVs in water. This shift is in the opposite direction from that reported for cell-derived GPMVs. The increase in Tmix is robust across GUVs of several types of lipids, ratios of lipids, types of short-chain n-alcohols, and concentrations of n-alcohols. However, as chain lengths of n-alcohols increase, nonmonotonic shifts in Tmix are observed. Alcohols with chain lengths of 10–14 carbons decrease Tmix in ternary GUVs of dioleoyl-PC/dipalmitoyl-PC/cholesterol, whereas 16 carbons increase Tmix again. Gray et al. observed a similar influence of the length of n-alcohols on the direction of the shift in Tmix. These results are consistent with a scenario in which the relative partitioning of n-alcohols between liquid-ordered and liquid-disordered phases evolves as the chain length of the n-alcohol increases.

Journal article

Brooks NJ, Castiglione F, Doherty CM, Dolan A, Hill AJ, Hunt PA, Matthews RP, Mauri M, Mele A, Simonutti R, Villar-Garcia IJ, Weber CC, Welton Tet al., 2017, Linking the structures, free volumes, and properties of ionic liquid mixtures, Chemical Science, Vol: 8, Pages: 6359-6374, ISSN: 2041-6520

The formation of ionic liquid (IL) mixtures has been proposed as an approach to rationally fine-tune the physicochemical properties of ILs for a variety of applications. However, the effects of forming such mixtures on the resultant properties of the liquids are only beginning to be understood. Towards a more complete understanding of both the thermodynamics of mixing ILs and the effect of mixing these liquids on their structures and physicochemical properties, the spatial arrangement and free volume of IL mixtures containing the common [C4C1im]+ cation and different anions have been systematically explored using small angle X-ray scattering (SAXS), positron annihilation lifetime spectroscopy (PALS) and 129Xe NMR techniques. Anion size has the greatest effect on the spatial arrangement of the ILs and their mixtures in terms of the size of the non-polar domains and inter-ion distances. It was found that differences in coulombic attraction between oppositely charged ions arising from the distribution of charge density amongst the atoms of the anion also significantly influences these inter-ion distances. PALS and 129Xe NMR results pertaining to the free volume of these mixtures were found to strongly correlate with each other despite the vastly different timescales of these techniques. Furthermore, the excess free volumes calculated from each of these measurements were in excellent agreement with the excess volumes of mixing measured for the IL mixtures investigated. The correspondence of these techniques indicates that the static and dynamic free volume of these liquid mixtures are strongly linked. Consequently, fluxional processes such as hydrogen bonding do not significantly contribute to the free volumes of these liquids compared to the spatial arrangement of ions arising from their size, shape and coulombic attraction. Given the relationship between free volume and transport properties such as viscosity and conductivity, these results provide a link between the s

Journal article

Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces Oet al., 2017, Engineering compartmentalized biomimetic micro- and nanocontainers, ACS Nano, Vol: 11, Pages: 6549-6565, ISSN: 1936-086X

Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.

Journal article

Brady RA, Brooks NJ, Cicuta P, Di Michele Let al., 2017, Crystallization of Amphiphilic DNA C-Stars., Nano Lett, Vol: 17, Pages: 3276-3281

Many emerging technologies require materials with well-defined three-dimensional nanoscale architectures. Production of these structures is currently underpinned by self-assembling amphiphilic macromolecules or engineered all-DNA building blocks. Both of these approaches produce restricted ranges of crystal geometries due to synthetic amphiphiles' simple shape and limited specificity, or the technical difficulties in designing space-filling DNA motifs with targeted shapes. We have overcome these limitations with amphiphilic DNA nanostructures, or "C-Stars", that combine the design freedom and facile functionalization of DNA-based materials with robust hydrophobic interactions. C-Stars self-assemble into single crystals exceeding 40 μm in size with lattice parameters exceeding 20 nm.

Journal article

Koch M, Wright KE, Otto O, Herbig M, Salinas ND, Tolia NH, Satchwell TJ, Guck J, Brooks NJ, Baum Jet al., 2017, Plasmodium falciparum erythrocyte-binding antigen 175 triggers a biophysical change in the red blood cell that facilitates invasion., Proc Natl Acad Sci U S A, Vol: 114, Pages: 4225-4230

Invasion of the red blood cell (RBC) by the Plasmodium parasite defines the start of malaria disease pathogenesis. To date, experimental investigations into invasion have focused predominantly on the role of parasite adhesins or signaling pathways and the identity of binding receptors on the red cell surface. A potential role for signaling pathways within the erythrocyte, which might alter red cell biophysical properties to facilitate invasion, has largely been ignored. The parasite erythrocyte-binding antigen 175 (EBA175), a protein required for entry in most parasite strains, plays a key role by binding to glycophorin A (GPA) on the red cell surface, although the function of this binding interaction is unknown. Here, using real-time deformability cytometry and flicker spectroscopy to define biophysical properties of the erythrocyte, we show that EBA175 binding to GPA leads to an increase in the cytoskeletal tension of the red cell and a reduction in the bending modulus of the cell's membrane. We isolate the changes in the cytoskeleton and membrane and show that reduction in the bending modulus is directly correlated with parasite invasion efficiency. These data strongly imply that the malaria parasite primes the erythrocyte surface through its binding antigens, altering the biophysical nature of the target cell and thus reducing a critical energy barrier to invasion. This finding would constitute a major change in our concept of malaria parasite invasion, suggesting it is, in fact, a balance between parasite and host cell physical forces working together to facilitate entry.

Journal article

Miller RM, Ces O, Brooks NJ, Robles ESJ, Cabral JTet al., 2017, Crystallization of Sodium Dodecyl Sulfate-Water Micellar Solutions under Linear Cooling, CRYSTAL GROWTH & DESIGN, Vol: 17, Pages: 2428-2437, ISSN: 1528-7483

The crystallization kinetics of sodium dodecyl sulfate (SDS)-water micellar solutions, under linear cooling conditions, were experimentally investigated using optical microscopy, differential scanning calorimetry, and infrared spectroscopy. Cooling rates were systematically varied, from 0.1 to 50 °C min–1, encompassing environmental to near-“isothermal” temperature changes, between 22 and −5 °C, for a reference concentration of 20% SDS-H2O. The cooling rate was shown to determine the dominant crystal morphologies, with platelets and needles predominating at the lowest and highest rates, respectively. The results were rationalized in terms of isothermal crystallization data and the time–temperature cooling profile. Rates 0.1, 5.0, and 10 °C min–1 yield morphologies and kinetics analogous to those of isothermal quenches at the corresponding crystallization temperature window. Nontrivial deviations were observed for intermediate rates (0.5, 1.0 °C min–1), due to commensurate changes in temperature and crystallization mechanism, accompanied by solute depletion. The polythermal metastable zone width was estimated, and the non-isothermal nucleation described by the Nývlt equation, while the Avrami and Kissinger models described overall crystallization kinetics. Our measurements quantify the impact of temperature gradients in the crystallization of ubiquitous SDS micellar solutions, for a range of practically relevant profiles incurred during manufacturing and storage.

Journal article

Barlow NE, Smpokou E, Friddin MS, Macey R, Gould I, Turnbull C, Flemming AJ, Brooks NJ, Ces O, Barter LMCet al., 2017, Engineering plant membranes using droplet interface bilayers, Biomicrofluidics, Vol: 11, ISSN: 1932-1058

Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana, tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

Journal article

McCarthy NL, Brooks NJ, Tyler AII, ElGamacy M, Welche P, Payne MC, Chau PLet al., 2017, A combined X-ray scattering and simulation study of halothane in membranes at raised pressures, Chemical Physics Letters, Vol: 671, Pages: 21-27, ISSN: 0009-2614

Using a combination of high pressure wide angle X-ray scattering exper-iments and molecular dynamics simulations, we probe the e ect of thearchetypal general anaesthetic halothane on the lipid hydrocarbon chainpacking and ordering in model bilayers and the variation in these parame-ters with pressure. Incorporation of halothane into the membrane causes anexpansion of the lipid hydrocarbon chain packing at all pressures but thee ect of halothane incorporation on the hydrocarbon chain order parameteris signi cantly reduced at elevated pressure.

Journal article

Barlow NE, Bolognesi G, Flemming AJ, Brooks N, Barter LMC, Ces Oet al., 2016, Multiplexed droplet Interface bilayer formation, Lab on a Chip, Vol: 16, Pages: 4653-4657, ISSN: 1473-0197

We present a simple method for the multiplexed formation ofdroplet interface bilayers (DIBs) using a mechanically operatedlinear acrylic chamber array. To demonstrate the functionality ofthe chip design, a lipid membrane permeability assay is performed.We show that multiple, symmetric DIBs can be created andseparated using this robust low-cost approach.

Journal article

Furse S, Brooks NJ, Woscholski R, Gaffney PRJ, Templer RHet al., 2016, Pressure-dependent inverse bicontinuous cubic phase formation in a phosphatidylinositol 4-phosphate/phosphatidylcholine system, Chemical Data Collections, Vol: 3-4, Pages: 15-20, ISSN: 2405-8300

In this paper, we report the inositide-driven formation of an inverse bicontinuous cubic phase with space group Ia3d (QIIG, gyroid phase). The system under study consisted of distearoylphosphatidylinositol 4-phosphate (DSPIP) and dioleoylphosphatidylcholine at a molar ratio of 1:49, with a physiological concentration of magnesium ions at pH 7·4. The behaviour of the system was monitored as a function of temperature and pressure. The formation of the phase with Ia3d geometry was recorded repeatably at high pressure, and occurred more readily at higher temperatures. We conclude that the Ia3d phase formed is a thermodynamically stable structure, and that DSPIP is a potent source of membrane curvature that can drive the formation of mesophases with both 2- and 3D geometry.

Journal article

Chan CL, Bolognesi G, Bhandarkar A, Friddin M, Brooks NJ, Seddon J, Law R, Barter L, Ceset al., 2016, DROPLAY: laser writing of functional patterns within biological microdroplet displays, Lab on a Chip, Vol: 16, Pages: 4621-4627, ISSN: 1473-0197

In this study, we introduce an optofluidic method for the rapid construction of large-area cell-sized droplet assemblieswith user-defined re-writable two-dimensional patterns of functional droplets. Light responsive water-in-oil dropletscapable of releasing fluorescent dye molecules upon exposure were generated and self-assembled into arrays in amicrofluidic device. This biological architecture was exploited by the scanning laser of a confocal microscope to ‘write’ userdefined patterns of differentiated (fluorescent) droplets in a network of originally undifferentiated (non-fluorescent)droplets. As a result, long lasting images were produced on a droplet fabric with droplets acting as pixels of a biologicalmonitor, which can be erased and re-written on-demand. Regio-specific light-induced droplet differentiation within a largepopulation of droplets provides a new paradigm for the rapid construction of bio-synthetic systems with potential as tissuemimics and biological display materials.

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks N, Law R, Seddon J, Neil M, ces Oet al., 2016, Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets, Soft Matter, Vol: 12, Pages: 7731-7734, ISSN: 1744-6848

We report a new platform technology to systematically assemble droplet interface bilayer (DIB) networks in user-defined 3D architectures from cell-sized droplets using optical tweezers. Our OptiDIB platform is the first demonstration of optical trapping to precisely construct 3D DIB networks, paving the way for the development of a new generation of modular bio-systems.

Journal article

Dent MR, López-Duarte I, Dickson CJ, Chairatana P, Anderson HL, Gould IR, Wylie D, Vyšniauskas A, Brooks NJ, Kuimova MKet al., 2016, Imaging plasma membrane phase behaviour in live cells using a thiophene-based molecular rotor, Chemical Communications, Vol: 52, Pages: 13269-13272, ISSN: 1364-548X

Molecular rotors have emerged as versatile probes of microscopic viscosity in lipid bilayers, although it has proved difficult to find probes that stain both phases equally in phase-separated bilayers. Here, we investigate the use of a membrane-targeting viscosity-sensitive fluorophore based on a thiophene moiety with equal affinity for ordered and disordered lipid domains to probe ordering and viscosity within artificial lipid bilayers and live cell plasma membranes.

Journal article

Kuimova MK, Mika JT, Thompson AJ, Dent MR, Brooks NJ, Michiels J, Hofkens Jet al., 2016, Measuring the viscosity of the Escherichia coli plasma membrane using molecular rotors, Biophysical Journal, Vol: 111, Pages: 1528-1540, ISSN: 1542-0086

The viscosity is a highly important parameter within the cell membrane, affecting the diffusion ofsmall molecules and, hence, controlling the rates of intra-cellular reactions. There is significantinterest in the direct, quantitative assessment of membrane viscosity. Here we report the use offluorescence lifetime imaging microscopy (FLIM) of the molecular rotor BODIPY C10 in themembranes of live Escherichia coli (E. coli) bacteria to permit direct quantification of the viscosity.Using this approach we investigated the viscosity in live E. coli cells, spheroplasts and liposomesmade from E. coli membrane extracts. For live cells and spheroplasts the viscosity was measured atboth room temperature (23o C) and the E. coli growth temperature (37o C), while the membraneextract liposomes were studied over a range of measurement temperatures (5-40o C). At 37o C werecorded a membrane viscosity in live E. coli cells of 950 cP, which is considerably higher than thatpreviously observed in other live cell membranes (e.g., eukaryotic cells, membranes of Bacillusvegetative cells). Interestingly, this indicates that E. coli cells exhibit a high degree of lipid orderingwithin their liquid-phase plasma membranes.

Journal article

Machta BB, Gray E, Nouri M, McCarthy NLC, Gray EM, Miller AL, Brooks NJ, Veatch SLet al., 2016, Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia, Biophysical Journal, Vol: 11, Pages: 537-545, ISSN: 1542-0086

Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n -alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n -alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n -alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described “intoxication reversers” raise Tc and counter ethanol’s effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.

Journal article

Brooks NJ, Cates ME, Clegg PS, Lips A, Poon WCK, Seddon JMet al., 2016, Soft Interfacial Materials: from Fundamentals to Formulation, Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, Vol: 374, ISSN: 1364-503X

This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’.The science of soft interfaces (lipid membranes, emulsions, particle-stabilized droplets, etc.) is rapidly moving into an era of predictive capability that allows the design and development of advanced materials to be based on secure scientific knowledge. This Theme Issue reports papers presented at a Discussion Meeting intended not only to address the fundamental science, focusing on generic design principles for self-organization and interfacial structure, but also to explore the resulting prospects for ‘informed formulation’ of new and improved industrial products.At the end of this introductory essay, we briefly summarize some of the scientific progress reported in the individual research and review papers included in this volume. Before doing so, we take the opportunity to describe some of the background thinking that shaped the content and aims of the Meeting as conceived by the organizers.This essay is intended to be thought provoking, not definitive; much of it is based on a wrap-up discussion that two of us (Alex Lips and Wilson Poon) contributed at the end of the Meeting itself. In it, we focus on the relationship between science (‘fundamentals’) and technology (‘formulation’). At least in the soft materials area, this represents a subtler and more interesting form of symbiosis than is often assumed.

Journal article

McCarthy NLC, Brooks NJ, 2016, Using high pressure to modulate lateral structuring in model lipid membranes, Advances in Biomembranes and Lipid Self-Assembly, Vol: 24, Pages: 75-89, ISSN: 2451-9634

© 2016 Elsevier Inc. All rights reserved. Cell membranes are highly complex fluid structures. They not only play a vital role in maintaining basic cellular integrity and compartmentalizing biological processes but also provide an active matrix within which reactions can take place and are vital for processes such as mediating protein function and signal transduction. The dynamic lateral organization of membranes is thought to be critical to their function and simplified lipid membranes offer a highly controllable model for probing the molecular interactions and assemblies that contribute to membrane function. Pressure has recently proved to be a highly important tool for triggering changes in lateral structure in model membranes at high speed and without risking thermal degradation of the membrane constituents.

Journal article

Miller RM, Poulos AS, Robles ESJ, Brooks NJ, Ces O, Cabral JTet al., 2016, Isothermal Crystallization Kinetics of Sodium Dodecyl Sulfate–Water Micellar Solutions, Crystal Growth & Design, Vol: 16, Pages: 3379-3388, ISSN: 1528-7505

The crystallization mechanisms and kinetics of micellar sodium dodecyl sulfate (SDS) solutions in water, under isothermal conditions, were investigated experimentally by a combination of reflection optical microscopy (OM), differential scanning calorimetry (DSC), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The rates of nucleation and growth were estimated from OM and DSC across temperatures ranging from 20 to −6 °C for 20% SDS-H2O, as well as for 10 and 30% SDS-H2O at representative temperatures of 6, 2, and −2 °C. A decrease in temperature increased both nucleation and growth rates, and the combined effect of the two processes on the morphology was quantified via both OM and ATR-FTIR. Needles, corresponding to the hemihydrate polymorph, become the dominant crystal form at ≤ −2 °C, while platelets, the monohydrate, predominate at higher temperatures. Above 8 °C, crystallization was only observed if seeded from crystals generated at lower temperatures. Our results provide quantitative and morphological insight into the crystallization of ubiquitous micellar SDS solutions and its phase stability below room temperature.

Journal article

Karamdad K, Law R, Seddon J, Brooks NJ, Ces Oet al., 2016, Studying the effects of asymmetry on the bending rigidity of lipid membranes formed by microfluidics, Chemical Communications (London), Vol: 52, Pages: 5277-5280, ISSN: 0009-241X

In this article we detail a robust high-throughput microfluidic platform capable of fabricating either symmetric or asymmetric giant unilamellar vesicles (GUVs) and characterise the mechanical properties of their membranes.

Journal article

Zhang Y, Carter JW, Lervik A, Brooks NJ, Seddon JM, Bresme Fet al., 2016, Structural organization of sterol molecules in DPPC bilayers: a coarse-grained molecular dynamics investigation, Soft Matter, Vol: 12, Pages: 2108-2117, ISSN: 1744-6848

Journal article

Martin HP, Brooks NJ, Seddon JM, Luckham PF, Terrill NJ, Kowalski AJ, Cabral JTet al., 2016, Microfluidic processing of concentrated surfactant mixtures: online SAXS, microscopy and rheology, Soft Matter, Vol: 12, Pages: 1750-1758, ISSN: 1744-6848

Journal article

Friddin MS, Bolognesi G, Elani Y, Brooks NJ, Law RV, Seddon JM, Neil MAA, Ces Oet al., 2016, Light-driven drag and drop assembly of micron-scale bilayer networks for synthetic biology, Pages: 545-546

We have developed a new method to assemble single- or multi-layered networks of droplet interface bilayers (DIBs) from cell-sized droplets using a single beam optical trap (optical tweezers). The novelty of our approach is the ability to directly trap the microdroplets with the laser and manipulate them in 3D to construct DIB networks of user-defined architectures. Our method does not require a complex optical setup, is versatile, contactless, benefits from both high spatial and temporal resolution, and could set a new paradigm for the assembly of smart, synthetic biosystems.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00366450&person=true&page=2&respub-action=search.html