Imperial College London

Emeritus ProfessorNancyCurtin

Faculty of MedicineNational Heart & Lung Institute

Emeritus Professor of Muscle Physiology
 
 
 
//

Contact

 

n.curtin Website

 
 
//

Location

 

//

Summary

 

Publications

Publication Type
Year
to

46 results found

West TG, Curtin NA, Woledge RC, 2023, The predominant stride-frequency for routine swimming in catsharks (<i>Scyliorhinus canicula</i>) generates high power at high efficiency in the red musculature, JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, Vol: 44, Pages: 193-199, ISSN: 0142-4319

Journal article

Curtin NA, Barclay CJ, 2023, The energetics of muscle contractions resembling in vivo performance., J Biomech, Vol: 156

Muscle energetics has expanded into the study of contractions that resemble in vivo muscle activity. A summary is provided of experiments of this type and what they have added to our understanding of muscle function and effects of compliant tendons, as well as the new questions raised about the efficiency of energy transduction in muscle.

Journal article

Barclay CJ, Curtin NA, 2023, Advances in understanding the energetics of muscle contraction., J Biomech, Vol: 156

Muscle energetics encompasses the relationships between mechanical performance and the biochemical and thermal changes that occur during muscular activity. The biochemical reactions that underpin contraction are described and the way in which these are manifest in experimental recordings, as initial and recovery heat, is illustrated. Energy use during contraction can be partitioned into that related to cross-bridge force generation and that associated with activation by Ca2+. Activation processes account for 25-45% of ATP turnover in an isometric contraction, varying amongst muscles. Muscle energy use during contraction depends on the nature of the contraction. When shortening muscles produce less force than when contracting isometrically but use energy at a greater rate. These characteristics reflect more rapid cross-bridge cycling when shortening. When lengthening, muscles produce more force than in an isometric contraction but use energy at a lower rate. In that case, cross-bridges cycle but via a pathway in which ATP splitting is not completed. Shortening muscles convert part of the free energy available from ATP hydrolysis into work with the remainder appearing as heat. In the most efficient muscle studied, that of a tortoise, cross-bridges convert a maximum of 47% of the available energy into work. In most other muscles, only 20-30% of the free energy from ATP hydrolysis is converted into work.

Journal article

Mansson A, Lou F, Curtin N, Reggiani Cet al., 2022, Obituary: KAP Edman (1926-2022) - A remembrance, ACTA PHYSIOLOGICA, Vol: 235, ISSN: 1748-1708

Journal article

Barclay CJ, Curtin NA, 2022, The legacy of A. V. Hill's Nobel Prize winning work on muscle energetics, JOURNAL OF PHYSIOLOGY-LONDON, Vol: 600, Pages: 1555-1578, ISSN: 0022-3751

Journal article

Curtin NA, Woledge RC, West TG, Goodwin D, Piercy RJ, Wilson AMet al., 2019, Energy turnover in mammalian skeletal muscle in contractions mimicking locomotion: effects of stimulus pattern on work, impulse and energetic cost and efficiency, The Journal of Experimental Biology, Vol: 222, ISSN: 0022-0949

Active muscle performs various mechanical functions during locomotion: work output during shortening, work absorption when resisting (but not preventing) lengthening, and impulse (force-time integral) whenever there is active force. The energetic costs of these functions are important components in the energy budget during locomotion.We investigated how the pattern of stimulation and movement affected the mechanics and energetics of muscle fibre bundles isolated from wild rabbits (Oryctolagus cuniculus, Linnaeus). The fibres were from muscles consisting of mainly fast-twitch, type-2 fibres. Fibre length was either held constant (isometric) or a sinusoidal pattern of movement was imposed at a frequency similar to the stride frequency of running wild rabbits. Duty cycle (=stimulation duration x movement frequency) and phase (timing of stimulation relative to movement) were varied. Work and impulse were measured as well as energy produced as heat. The sum of net work (work output - work input) and heat was taken as a measure of energetic cost.Maximum work output was produced with a long duty cycle and stimulation starting slightly before shortening and was produced quite efficiently. However, efficiency was even higher with other stimulation patterns that produced less work. The highest impulse (considerably higher than isometric impulse) was produced when stimulation started while the muscle fibres were being lengthened. High impulse was produced very economically due to the low cost of producing force during lengthening.Thus, locomotion demanding high work, high impulse or economical work output or impulse, each require a distinct and different pattern of stimulation and movement.

Journal article

Curtin NA, Bartlam-Brooks HLA, Hubel TY, Lowe JC, Gardner-Medwin AR, Bennitt E, Amos SJ, Lorenc M, West TG, Wilson AMet al., 2018, Remarkable muscles, remarkable locomotion in desert-dwelling wildebeest, Nature, Vol: 563, Pages: 393-396, ISSN: 0028-0836

Large mammals that live in arid and/or desert environments can cope with seasonal and local variations in rainfall, food and climate1 by moving long distances, often without reliable water or food en route. The capacity of an animal for this long-distance travel is substantially dependent on the rate of energy utilization and thus heat production during locomotion-the cost of transport2-4. The terrestrial cost of transport is much higher than for flying (7.5 times) and swimming (20 times)4. Terrestrial migrants are usually large1-3 with anatomical specializations for economical locomotion5-9, because the cost of transport reduces with increasing size and limb length5-7. Here we used GPS-tracking collars10 with movement and environmental sensors to show that blue wildebeest (Connochaetes taurinus, 220 kg) that live in a hot arid environment in Northern Botswana walked up to 80 km over five days without drinking. They predominantly travelled during the day and locomotion appeared to be unaffected by temperature and humidity, although some behavioural thermoregulation was apparent. We measured power and efficiency of work production (mechanical work and heat production) during cyclic contractions of intact muscle biopsies from the forelimb flexor carpi ulnaris of wildebeest and domestic cows (Bos taurus, 760 kg), a comparable but relatively sedentary ruminant. The energetic costs of isometric contraction (activation and force generation) in wildebeest and cows were similar to published values for smaller mammals. Wildebeest muscle was substantially more efficient (62.6%) than the same muscle from much larger cows (41.8%) and comparable measurements that were obtained from smaller mammals (mouse (34%)11 and rabbit (27%)). We used the direct energetic measurements on intact muscle fibres to model the contribution of high working efficiency of wildebeest muscle to minimizing thermoregulatory challenges during their long migrations under hot arid c

Journal article

Wilson AM, Hubel TY, Wilshin SD, Lowe JC, Lorenc M, Dewhirst OP, Bartlam-Brooks HLA, Diack R, Bennitt E, Golabek KA, Woledge RC, McNutt JW, Curtin NA, West TGet al., 2018, Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala., Nature, Vol: 554, Pages: 183-188

The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.

Journal article

Curtin NA, Diack RA, West TG, Wilson AM, Woledge RCet al., 2015, Skinned fibres produce the same power and force as intact fibre bundles from muscle of wild rabbits., Journal of Experimental Biology, Vol: 218, Pages: 2856-2863, ISSN: 1477-9145

Skinned fibres have advantages for comparing the muscle properties of different animal species because they can be prepared from a needle biopsy taken under field conditions. However, it is not clear how well the contractile properties of skinned fibres reflect the properties of the muscle fibres in vivo. Here, we compare the mechanical performance of intact fibre bundles and skinned fibres from muscle of the same animals. This is the first such direct comparison. Maximum power and isometric force were measured at 25°C using peroneus longus (PL) and extensor digiti-V (ED-V) muscles from wild rabbits (Oryctolagus cuniculus). More than 90% of the fibres in these muscles are fast-twitch, type 2 fibres. Maximum power was measured in force-clamp experiments. We show that maximum power per volume was the same in intact (121.3±16.1 W l(-1), mean±s.e.m.; N=16) and skinned (122.6±4.6 W l(-1); N=141) fibres. Maximum relative power (power/FIM Lo, where FIM is maximum isometric force and Lo is standard fibre length) was also similar in intact (0.645±0.037; N=16) and skinned (0.589±0.019; N=141) fibres. Relative power is independent of volume and thus not subject to errors in measurement of volume. Finally, maximum isometric force per cross-sectional area was also found to be the same for intact and skinned fibres (181.9 kPa±19.1; N=16; 207.8 kPa±4.8; N=141, respectively). These results contrast with previous measurements of performance at lower temperatures where skinned fibres produce much less power than intact fibres from both mammals and non-mammalian species.

Journal article

Zolfaghari PS, Carré JE, Parker N, Curtin NA, Duchen MR, Singer Met al., 2015, Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis., Am J Physiol Endocrinol Metab, Vol: 308, Pages: E713-E725

Muscle dysfunction is a common feature of severe sepsis and multiorgan failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit reactive oxygen species (ROS) production. Using a murine model, we examined metabolic, cardiovascular, and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia, and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Δψm was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP3 protein abundance at 24 h, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and the phosphorylation pathway. However, UCP3 does not play an important functional role, despite its upregulation.

Journal article

West TG, Toepfer CN, Woledge RC, Curtin NA, Rowlerson A, Kalakoutis M, Hudson P, Wilson AMet al., 2013, Power output of skinned skeletal muscle fibres from the cheetah (<i>Acinonyx jubatus</i>), JOURNAL OF EXPERIMENTAL BIOLOGY, Vol: 216, Pages: 2974-2982, ISSN: 0022-0949

Journal article

Song W, Vikhorev PG, Kashyap MN, Rowlands C, Ferenczi MA, Woledge RC, MacLeod K, Marston S, Curtin NAet al., 2013, Mechanical and energetic properties of papillary muscle from <i>ACTC</i> E99K transgenic mouse models of hypertrophic cardiomyopathy, AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, Vol: 304, Pages: H1513-H1524, ISSN: 0363-6135

Journal article

Song W, Vikhorev P, Marston SB, Woledge RC, Curtin NAet al., 2012, Reduced Efficiency of Contraction in the <i>ACTC</i> E99k Mouse Model of Hypertrophic Cardiomyopathy, CIRCULATION, Vol: 126, ISSN: 0009-7322

Journal article

Mansfield C, West TG, Curtin NA, Ferenczi MAet al., 2012, Stretch of Contracting Cardiac Muscle Abruptly Decreases the Rate of Phosphate Release at High and Low Calcium, JOURNAL OF BIOLOGICAL CHEMISTRY, Vol: 287, Pages: 25696-25705, ISSN: 0021-9258

Journal article

Park-Holohan S, Linari M, Reconditi M, Fusi L, Brunello E, Irving M, Dolfi M, Lombardi V, West TG, Curtin NA, Woledge RC, Piazzesi Get al., 2012, Mechanics of myosin function in white muscle fibres of the dogfish, Scyliorhinus canicula, JOURNAL OF PHYSIOLOGY-LONDON, Vol: 590, Pages: 1973-1988, ISSN: 0022-3751

Journal article

Song W, Marston SB, Woledge RC, Curtin Net al., 2012, Reduced Efficiency of Intact Papillary Muscles in <i>ACTC</i> E99K Transgenic Mouse Heart, BIOPHYSICAL JOURNAL, Vol: 102, Pages: 355A-355A, ISSN: 0006-3495

Journal article

Ferenczi MA, Bickham DC, West TG, Woledge RC, Curtin NAet al., 2011, The effect of stretch on phosphate release in skeletal muscle fibres, 8th EBSA European Biophysics Congress, Publisher: SPRINGER, Pages: 133-133, ISSN: 0175-7571

Conference paper

Bickham DC, West TG, Webb MR, Woledge RC, Curtin NA, Ferenczi MAet al., 2011, Millisecond-scale biochemical response to change in strain., Biophysical Journal

Journal article

Barclay CJ, Woledge RC, Curtin NA, 2010, Is the efficiency of mammalian (mouse) skeletal muscle temperature dependent?, JOURNAL OF PHYSIOLOGY-LONDON, Vol: 588, Pages: 3819-3831, ISSN: 0022-3751

Journal article

Park-Holohan S-J, West TG, Woledge RC, Ferenczi MA, Barclay CJ, Curtin NAet al., 2010, Effect of phosphate and temperature on force exerted by white muscle fibres from dogfish, JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, Vol: 31, Pages: 35-44, ISSN: 0142-4319

Journal article

Curtin NA, Lou F, Woledge RC, 2010, Sustained performance by red and white muscle fibres from the dogfish <i>Scyliorhinus canicula</i>, JOURNAL OF EXPERIMENTAL BIOLOGY, Vol: 213, Pages: 1921-1929, ISSN: 0022-0949

Journal article

Loiselle DS, Tran K, Crampin EJ, Curtin NAet al., 2010, Why has reversal of the actin-myosin cross-bridge cycle not been observed experimentally?, J Appl Physiol (1985), Vol: 108, Pages: 1465-1471

We trace the history of attempts to determine whether the experimentally observed diminution of metabolic energy expenditure when muscles lengthen during active contraction is consistent with reversibility of biochemical reactions and, in particular, with the regeneration of ATP. We note that this scientific endeavor has something of a parallel flavor to it, with both early and more recent experiments exploiting both isolated muscle preparations and exercising human subjects. In tracing this history from the late 19th century to the present, it becomes clear that energy can be (at least transiently) stored in a muscle undergoing an eccentric contraction but that this is unlikely to be due to the regeneration of ATP. A recently developed, thermodynamically constrained model of the cross-bridge cycle provides additional insight into this conclusion.

Journal article

Barclay CJ, Woledge RC, Curtin NA, 2010, Inferring crossbridge properties from skeletal muscle energetics, PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, Vol: 102, Pages: 53-71, ISSN: 0079-6107

Journal article

Woledge RC, Barclay CJ, Curtin NA, 2009, Temperature change as a probe of muscle crossbridge kinetics: a review and discussion, PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, Vol: 276, Pages: 2685-2695, ISSN: 0962-8452

Journal article

Barclay CJ, Woledge RC, Curtin NA, 2009, Effects of UCP3 genotype, temperature and muscle type on energy turnover of resting mouse skeletal muscle., Pflugers Arch, Vol: 457, Pages: 857-864, ISSN: 0031-6768

Uncoupling protein 3 (UCP3) is a mitochondrial transporter protein which, when over-expressed in mice, is associated with increased metabolic rate, increased feeding and low body weight. This phenotype probably reflects the increased levels of UCP3 partially uncoupling mitochondrial respiration from cellular ATP demands. Consistent with that, mitochondria isolated from muscles of mice that over-express UCP3 are less tightly coupled than those from wild-type mice but the degree of uncoupling is not modulated by likely physiological regulatory factors. To determine whether this also applies to intact muscle fibres, we tested the hypothesis that UCP3 constitutively (i.e. in an unregulated fashion) uncouples mitochondria in muscles from mice that over-expressed human UCP3 (OE mice). The rate of heat production of resting muscles was measured in vitro using bundles of fibres from soleus and extensor digitorum longus muscles of OE, wild-type (WT) and UCP3 knock-out mice. At 20 degrees C, the only significant effect of genotype was that the rate of heat production of OE soleus (3.04+/-0.16 mW g(-1)) was greater than for WT soleus (2.31+/-0.05 mW g(-1)). At physiological temperature (35 degrees C), the rate of heat production was independent of genotype and equal to the expected in vivo rate for skeletal muscles of WT mice. We conclude that at 35 degrees C, the transgenic UCP3 was not constitutively active, but at 20 degrees C in slow-twitch muscle, it was partially activated by unknown factors. The physiological factor(s) that activate mitochondrial uncoupling by UCP3 in vivo was either not present or inactive in resting isolated muscles.

Journal article

Foster K, Graham IR, Otto A, Foster H, Trollet C, Yaworsky PJ, Walsh FS, Bickham D, Curtin NA, Kawar SL, Patel K, Dickson Get al., 2009, Adeno-associated virus-8-mediated intravenous transfer of myostatin propeptide leads to systemic functional improvements of slow byt not fast muscle, Rejuvenation Research, Vol: 12, Pages: 85-93

Journal article

Barclay CJ, Lichtwark GA, Curtin NA, 2008, The energetic cost of activation in mouse fast-twitch muscle is the same whether measured using reduced filament overlap or N-benzyl-p-toluenesulphonamide., Acta Physiol (Oxf), Vol: 193, Pages: 381-391

AIM: Force generation and transmembrane ion pumping account for the majority of energy expended by contracting skeletal muscles. Energy turnover for ion pumping, activation energy turnover (E(A)), can be determined by measuring the energy turnover when force generation has been inhibited. Most measurements show that activation accounts for 25-40% of isometric energy turnover. It was recently reported that when force generation in mouse fast-twitch muscle was inhibited using N-benzyl-p-toluenesulphonamide (BTS), activation accounted for as much as 80% of total energy turnover during submaximal contractions. The purpose of this study was to compare E(A) measured by inhibiting force generation by: (1) the conventional method of reducing contractile filament overlap; and (2) pharmacological inhibition using BTS. METHODS: Experiments were performed in vitro using bundles of fibres from mouse fast-twitch extensor digitorum longus (EDL) muscle. Energy turnover was quantified by measuring the heat produced during 1-s maximal and submaximal tetanic contractions at 20 and 30 degrees C. RESULTS: E(A) measured using reduced filament overlap was 0.36 +/- 0.04 (n = 8) at 20 degrees C and 0.31 +/- 0.05 (n = 6) at 30 degrees C. The corresponding values measured using BTS in maximal contractions were 0.46 +/- 0.06 and 0.38 +/- 0.06 (n = 6 in both cases). There were no significant differences among these values. E(A) was also no different when measured using BTS in submaximal contractions. CONCLUSION: Activation energy turnover is the same whether measured using BTS or reduced filament overlap and accounts for slightly more than one-third of isometric energy turnover in mouse EDL muscle.

Journal article

Barclay CJ, Woledge RC, Curtin NA, 2007, Energy turnover for Ca<SUP>+2</SUP> cycling in skeletal muscle, JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, Vol: 28, Pages: 259-274, ISSN: 0142-4319

Journal article

West TG, Ferenczi MA, Woledge RC, Curtin NAet al., 2005, Influence of ionic strength on the time course of force development and phosphate release by dogfish muscle fibres, JOURNAL OF PHYSIOLOGY-LONDON, Vol: 567, Pages: 989-1000, ISSN: 0022-3751

Journal article

Curtin NA, Woledge RC, Aerts P, 2005, Muscle directly meets the vast power demands in agile lizards., Proc Biol Sci, Vol: 272, Pages: 581-584, ISSN: 0962-8452

Level locomotion in small, agile lizards is characterized by intermittent bursts of fast running. These require very large accelerations, often reaching several times g. The power input required to increase kinetic energy is calculated to be as high as 214 W kg(-1) muscle (+/-20 W kg(-1) s.e.; averaged over the complete locomotor cycle) and 952 W kg(-1) muscle (+/-89 W kg(-1) s.e.; instantaneous peak power). In vitro muscle experiments prove that these exceptional power requirements can be met directly by the lizard's muscle fibres alone; there is no need for mechanical power amplifying mechanisms.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00165377&limit=30&person=true