Imperial College London

Dr N.J. (Ned) Ekins-Daukes

Faculty of Natural SciencesDepartment of Physics

Academic Visitor
 
 
 
//

Contact

 

+44 (0)20 7594 6675n.ekins-daukes Website

 
 
//

Location

 

H1002Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Li:2022:10.1038/s41560-022-01078-7,
author = {Li, J and Huang, J and Ma, F and Sun, H and Cong, J and Privat, K and Webster, RF and Cheong, S and Yao, Y and Chin, RL and Yuan, X and He, M and Sun, K and Li, H and Mai, Y and Hameiri, Z and Ekins-Daukes, NJ and Tilley, RD and Unold, T and Green, MA and Hao, X},
doi = {10.1038/s41560-022-01078-7},
journal = {Nature Energy},
pages = {754--764},
title = {Unveiling microscopic carrier loss mechanisms in 12% efficient Cu<inf>2</inf>ZnSnSe<inf>4</inf> solar cells},
url = {http://dx.doi.org/10.1038/s41560-022-01078-7},
volume = {7},
year = {2022}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Understanding carrier loss mechanisms at microscopic regions is imperative for the development of high-performance polycrystalline inorganic thin-film solar cells. Despite the progress achieved for kesterite, a promising environmentally benign and earth-abundant thin-film photovoltaic material, the microscopic carrier loss mechanisms and their impact on device performance remain largely unknown. Herein, we unveil these mechanisms in state-of-the-art Cu2ZnSnSe4 (CZTSe) solar cells using a framework that integrates multiple microscopic and macroscopic characterizations with three-dimensional device simulations. The results indicate the CZTSe films have a relatively long intragrain electron lifetime of 10–30 ns and small recombination losses through bandgap and/or electrostatic potential fluctuations. We identify that the effective minority carrier lifetime of CZTSe is dominated by a large grain boundary recombination velocity (~104 cm s−1), which is the major limiting factor of present device performance. These findings and the framework can greatly advance the research of kesterite and other emerging photovoltaic materials.
AU - Li,J
AU - Huang,J
AU - Ma,F
AU - Sun,H
AU - Cong,J
AU - Privat,K
AU - Webster,RF
AU - Cheong,S
AU - Yao,Y
AU - Chin,RL
AU - Yuan,X
AU - He,M
AU - Sun,K
AU - Li,H
AU - Mai,Y
AU - Hameiri,Z
AU - Ekins-Daukes,NJ
AU - Tilley,RD
AU - Unold,T
AU - Green,MA
AU - Hao,X
DO - 10.1038/s41560-022-01078-7
EP - 764
PY - 2022///
SP - 754
TI - Unveiling microscopic carrier loss mechanisms in 12% efficient Cu<inf>2</inf>ZnSnSe<inf>4</inf> solar cells
T2 - Nature Energy
UR - http://dx.doi.org/10.1038/s41560-022-01078-7
VL - 7
ER -