Imperial College London

ProfessorNilayShah

Faculty of EngineeringDepartment of Chemical Engineering

Head of Department of Chemical Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6621n.shah

 
 
//

Assistant

 

Mrs Raluca Reynolds +44 (0)20 7594 5557

 
//

Location

 

ACEX 304/5ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

588 results found

Luo H, Barrio J, Sunny N, Li A, Steier L, Shah N, Stephens IEL, Titirici M-Met al., 2021, Progress and Perspectives in Photo- and Electrochemical-Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production, ADVANCED ENERGY MATERIALS, ISSN: 1614-6832

Journal article

Sarkis M, Bernardi A, Shah N, Papathanasiou MMet al., 2021, Decision support tools for next-generation vaccines and advanced therapy medicinal products: present and future, Current Opinion in Chemical Engineering, Vol: 32

Advanced Therapy Medicinal Products (ATMPs) are a novel class of biological therapeutics that utilise ground-breaking clinical interventions to prevent and treat life-threatening diseases. At the same time, viral vector-based and RNA-based platforms introduce a new generation of vaccine manufacturing processes. Their clinical success has led to an unprecedented rise in the demand that, for ATMPs, leads to a predicted market size of USD 9.6 billion by 2026. This paper discusses how mathematical models can serve as tools to assist decision-making in development, manufacturing and distribution of these new product classes. Recent contributions in the space of process, techno-economic and supply chain modelling are highlighted. Lastly, we present and discuss how Process Systems Engineering can be further advanced to support commercialisation of advanced therapeutics and vaccines.

Journal article

Falugi P, O'Dwyer E, Kerrigan EC, Atam E, Zagorowska M, Strbac G, Shah Net al., 2021, Predictive Control Co-Design for Enhancing Flexibility in Residential Housing with Battery Degradation, 7th IFAC Conference on Nonlinear Model Predictive Control

Conference paper

Acha Izquierdo S, Shah N, Soler A, 2021, Best practices to mitigate CO2 operational emissions: A case study of the Basque Country energy ecosystem, Ekonomiaz Basque Economic Review, ISSN: 0213-3865

This work reviews the best practices to reduce CO2 emissions in energy intensive organizations and energy value-chains by highlighting the synergy that can be built with like-minded organizations via collaborations; taking the Basque Country as a case study. An academic review covers how corporate strategies are attempting to curtail emissions in a systematic manner. The study is then complimented by findings obtained from interviews of key stakeholders in the Basque Country responsible for playing an important role in implementing a green agenda. The interviews allow us to highlight flagship projects and assess the collaborative framework strengths and challenges. Results indicate that organizations are well underway in implementing and researching low carbon solutions, but issues surrounding governance, strategy, and regulatory challenges can slow progress of goals.

Journal article

van de Berg D, Kis Z, Behmer CF, Samnuan K, Blakney A, Kontoravdi K, Shattock R, Shah Net al., 2021, Quality by design modelling to support rapid RNA vaccine production against emerging infectious diseases, npj Vaccines, Vol: 6, ISSN: 2059-0105

Rapid-response vaccine production platform technologies, including RNA vaccines, are being developed to combat viral epidemics and pandemics. A key enabler of rapid response is having quality-oriented disease-agnostic manufacturing protocols ready ahead of outbreaks. We are the first to apply the Quality by Design (QbD) framework to enhance rapid-response RNA vaccine manufacturing against known and future viral pathogens. This QbD framework aims to support the development and consistent production of safe and efficacious RNA vaccines, integrating a novel qualitative methodology and a quantitative bioprocess model. The qualitative methodology identifies and assesses the direction, magnitude and shape of the impact of critical process parameters (CPPs) on critical quality attributes (CQAs). The mechanistic bioprocess model quantifies and maps the effect of four CPPs on the CQA of effective yield of RNA drug substance. Consequently, the first design space of an RNA vaccine synthesis bioreactor is obtained. The cost-yield optimization together with the probabilistic design space contribute towards automation of rapid-response, high-quality RNA vaccine production.

Journal article

Freire Ordonez D, Shah N, Guillen-Gosalbez G, 2021, Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities, APPLIED ENERGY, Vol: 286, ISSN: 0306-2619

Journal article

Kis Z, Papathanasiou M, Kotidis P, Antonakoudis T, Kontoravdi K, Shah Net al., 2021, Stability modelling for biopharmaceutical process intermediates, Quality by Design - An Indispensable Approach to Accelerate Biopharmaceutical Product Development, Editors: Campa, Khan, Publisher: Parenteral Drug Association, Inc, Pages: 200-225, ISBN: 978-1-945584-22-0

Book chapter

Antonakoudis A, Kis Z, Kontoravdi K, Kotidis P, Papathanasiou M, Shah N, Tomba E, Varsakelis C, von Stoch Met al., 2021, Accelerating product and process development through a model centric approach, Quality by Design - An Indispensable Approach to Accelerate Biopharmaceutical Product Development, Editors: Campa, Khan, Publisher: Parenteral Drug Association, Inc., Pages: 285-338, ISBN: 978-1-945584-22-0

Book chapter

Vallejo L, Mazur C, Strapasson A, Cockerill T, Gambhir A, Hills T, Jennings M, Jones O, Kalas N, Keirstead J, Khor C, Napp T, Tong D, Woods J, Shah Net al., 2021, Halving Global CO2 Emissions by 2050: Technologies and Costs, International Energy Journal, Vol: 21, Pages: 147-158, ISSN: 1513-718X

This study provides a whole-systems simulation on how to halve global CO2 emissions by 2050, compared to 2010, with an emphasis on technologies and costs, in order to avoid a dangerous increase in the global mean surface temperature by end the of this century. There still remains uncertainty as to how much a low-carbon energy system costs compared to a high-carbon system. Integrated assessment models (IAMs) show a large range of costs of mitigation towards the 2°C target, with up to an order of magnitude difference between the highest and lowest cost, depending on a number of factors including model structure, technology availability and costs, and the degree of feedback with the wider macro-economy. A simpler analysis potentially serves to highlight where costs fall and to what degree. Here we show that the additional cost of a low-carbon energy system is less than 1% of global GDP more than a system resulting from low mitigation effort. The proposed approach aligns with some previous IAMs and other projections discussed in the paper, whilst also providing a clearer and more detailed view of the world. Achieving this system by 2050, with CO2 emissions of about 15GtCO2, depends heavily on decarbonisation of the electricity sector to around 100gCO2/kWh, as well as on maximising energy efficiency potential across all sectors. This scenario would require a major mitigation effort in all the assessed world regions. However, in order to keep the global mean surface temperature increase below 1.5°C, it would be necessary to achieve net-zero emission by 2050, requiring a much further mitigation effort.

Journal article

Sarkis M, Bernardi A, Shah N, Papathanasiou MMet al., 2021, Emerging challenges and opportunities in pharmaceutical manufacturing and distribution, Processes, Vol: 9, Pages: 1-16, ISSN: 2227-9717

The rise of personalised and highly complex drug product profiles necessitates significant advancements in pharmaceutical manufacturing and distribution. Efforts to develop more agile, responsive, and reproducible manufacturing processes are being combined with the application of digital tools for seamless communication between process units, plants, and distribution nodes. In this paper, we discuss how novel therapeutics of high-specificity and sensitive nature are reshaping well-established paradigms in the pharmaceutical industry. We present an overview of recent research directions in pharmaceutical manufacturing and supply chain design and operations. We discuss topical challenges and opportunities related to small molecules and biologics, dividing the latter into patient- and non-specific. Lastly, we present the role of process systems engineering in generating decision-making tools to assist manufacturing and distribution strategies in the pharmaceutical sector and ultimately embrace the benefits of digitalised operations.

Journal article

Quek VC, Shah N, Chachuat B, 2021, Plant-wide assessment of high-pressure membrane contactors in natural gas sweetening – Part I: Model development, Separation and Purification Technology, Vol: 258, Pages: 1-13, ISSN: 1383-5866

This paper presents a predictive mathematical model of high-pressure membrane contactor, with a view to developing a plant-wide model of natural gas sweetening including amine regeneration. We build upon an existing model of high-pressure membrane contactor by Quek et al. [Chem Eng Res Des 132:1005–1019, 2018], which uses a combination of 1-d and 2-d mass-balance equations to predict the CO2 absorption flux and membrane wetting under lean solvent operation. For the first time, quantitative predictions of the CO2 absorption flux can be made under both lean and semi-lean operations. A 1-d energy balance that accounts for the solvent evaporative losses and the exothermic CO2 absorption into the amine is solved alongside the mass-balance equations, in order to predict the solvent temperature profile inside the contactor. The evaporative losses of water and amines can be quantified separately, as well as the absorptive losses of light hydrocarbons with the amine solvent. The model’s predictive capability is tested against data from a lab-scale module and a pilot-scale module that is operated under industrially relevant conditions at a natural gas processing facility in Malaysia. A close agreement between model predictions and measurements of the CO2 absorption flux, solvent temperature profile, and hydrocarbon loss is observed for a wide range of gas and solvent flowrates and compositions, thereby validating the modeling assumptions. The contactor model is combined in a plant-wide model of natural gas sweetening in the companion paper, where it is used for process integration and analysis.

Journal article

Quek VC, Shah N, Chachuat B, 2021, Plant-wide assessment of high-pressure membrane contactors in natural gas sweetening – Part II: Process analysis, Separation and Purification Technology, Vol: 258, Pages: 1-11, ISSN: 1383-5866

This paper presents a model-based assessment of a natural gas sweetening process combining high-pressure membrane contactor with conventional amine regeneration. The analysis builds on a mathematical model of the membrane contactor developed in the companion paper, which is capable of quantitative predictions of the CO2 and hydrocarbon absorption in the amine solvent and the solvent evaporative losses to the treated gas. The predictive capability of the plant-wide model is tested against data from a pilot plant operated under industrially relevant conditions at a natural gas processing facility in Malaysia, showing a close agreement of the predictions with the CO2 outlet purity and the energy consumption at various CO2 loading in the amine solvent. This enables a model-based analysis of various operational decisions on the plant-wide solvent losses and hydrocarbon recovery from the rich amine. A new semi-lean process configuration that replaces the energy-intensive stripper column by a simple flash separator is shown to reduce the overall energy consumption significantly while still meeting sales gas specification. This new configuration forms the basis for the scale-up of a commercial natural gas sweetening process, which shows a high intensification potential in terms of volume footprint and energy duty compared to conventional amine treating plants.

Journal article

Ayoub AN, Gaigneux A, Le Brun N, Acha S, Shah Net al., 2021, Corrigendum to “The development of a low-carbon roadmap investment strategy to reach science based targets for commercial organisations with multi-site properties” [J. Build. Environ. 186 (2020) 107311], Building and Environment, Vol: 190, Pages: 107540-107540, ISSN: 0360-1323

Journal article

Al-Qahtani A, Parkinson B, Hellgardt K, Shah N, Guillen-Gosalbez Get al., 2021, Uncovering the true cost of hydrogen production routes using life cycle monetisation, Applied Energy, Vol: 281, Pages: 115958-115958, ISSN: 0306-2619

Hydrogen has been identified as a potential energy vector to decarbonise the transport and chemical sectors and achieve global greenhouse gas reduction targets. Despite ongoing efforts, hydrogen technologies are often assessed focusing on their global warming potential while overlooking other impacts, or at most including additional metrics that are not easily interpretable. Herein, a wide range of alternative technologies have been assessed to determine the total cost of hydrogen production by coupling life-cycle assessments with an economic evaluation of the environmental externalities of production. By including monetised values of environmental impacts on human health, ecosystem quality, and resources on top of the levelised cost of hydrogen production, an estimation of the “real” total cost of hydrogen was obtained to transparently rank the alternative technologies. The study herein covers steam methane reforming (SMR), coal and biomass gasification, methane pyrolysis, and electrolysis from renewable and nuclear technologies. Monetised externalities are found to represent a significant percentage of the total cost, ultimately altering the standard ranking of technologies. SMR coupled with carbon capture and storage emerges as the cheapest option, followed by methane pyrolysis, and water electrolysis from wind and nuclear. The obtained results identify the “real” ranges for the cost of hydrogen compared to SMR (business as usual) by including environmental externalities, thereby helping to pinpoint critical barriers for emerging and competing technologies to SMR.

Journal article

Kis Z, Kontoravdi C, Shattock R, Shah Net al., 2020, Resources, production scales and time required for producing RNA vaccines for the global pandemic demand., Vaccines (Basel), Vol: 9, Pages: 1-14, ISSN: 2076-393X

To overcome pandemics, such as COVID-19, vaccines are urgently needed at very high volumes. Here we assess the techno-economic feasibility of producing RNA vaccines for the demand associated with a global vaccination campaign. Production process performance is assessed for three messenger RNA (mRNA) and one self-amplifying RNA (saRNA) vaccines, all currently under clinical development, as well as for a hypothetical next-generation saRNA vaccine. The impact of key process design and operation uncertainties on the performance of the production process was assessed. The RNA vaccine drug substance (DS) production rates, volumes and costs are mostly impacted by the RNA amount per vaccine dose and to a lesser extent by the scale and titre in the production process. The resources, production scale and speed required to meet global demand vary substantially in function of the RNA amount per dose. For lower dose saRNA vaccines, global demand can be met using a production process at a scale of below 10 L bioreactor working volume. Consequently, these small-scale processes require a low amount of resources to set up and operate. RNA DS production can be faster than fill-to-finish into multidose vials; hence the latter may constitute a bottleneck.

Journal article

Denbow C, Le Brun N, Dowell NM, Shah N, Markides CNet al., 2020, The potential impact of Molten Salt Reactors on the UK electricity grid, Journal of Cleaner Production, Vol: 276, Pages: 1-18, ISSN: 0959-6526

The UK electricity grid is expected to supply a growing electricity demand and also to cope with electricity generation variability as the country pursues a low-carbon future. Molten Salt Reactors (MSRs) could offer a solution to meet this demand thanks to their estimated low capital costs, low operational risk, and promise of reliably dispatchable low-carbon electricity. In the published literature, there is little emphasis placed on estimating or modelling the future impact of MSRs on electricity grids. Previous modelling efforts were limited to quantifying the value of renewable energy sources, energy storage and carbon capture technologies. To date, no study has assessed or modelled MSRs as a competing power generation source for meeting decarbonization targets. Given this gap, the main objective of this paper is to explore the cost benefits for policy makers, consumers, and investors when MSRs are deployed between 2020 and 2050 for electricity generation in the UK. This paper presents results from electricity systems optimization (ESO) modelling of the costs associated with the deployment of 1350 MWe MSRs, from 2025 onwards to 2050, and compares this against a UK grid with no MSR deployment. Results illustrate a minimum economic benefit of £1.25 billion for every reactor installed over this time period. Additionally, an investment benefit occurs for a fleet of these reactors which have a combined net present value (NPV) of £22 billion in 2050 with a payback period of 23 years if electricity is sold competitively to consumers at a price of £60/MWh.

Journal article

Hart M, Austin W, Acha S, Le Brun N, Markides CN, Shah Net al., 2020, A roadmap investment strategy to reduce carbon intensive refrigerants in the food retail industry, Journal of Cleaner Production, Vol: 275, Pages: 1-17, ISSN: 0959-6526

High global warming potential (GWP) refrigerant leakage is the second-highest source of carbon emissions across UK supermarket retailers and a major concern for commercial organizations. Recent stringent UN and EU regulations promoting lower GWP refrigerants have been ratified to tackle the high carbon footprint of current refrigerants. This paper introduces a data-driven modelling framework for optimal investment strategies supporting the food retail industry to transition from hydrofluorocarbon (HFC) refrigeration systems to lower GWP systems by 2030, in line with EU legislation. Representative data from a UK food retailer is applied in a mixed integer linear model, making simultaneous investment decisions across the property estate. The model considers refrigeration-system age, capacity, refrigerant type, leakage and past-performance relative to peer systems in the rest of the estate. This study proposes two possible actions for high GWP HFC refrigeration systems: a) complying with legislation by retrofitting with an HFO blend (e.g. R449-A) or b) installing a new natural refrigerant system (e.g. R744). Findings indicate that a standard (i.e. business-as-usual) investment level of £6 m/yr drives a retrofitting strategy enabling significant reduction in annual carbon emissions of 71% by the end of 2030 (against the 2018 baseline), along with meeting regulatory compliance. The strategy is also highly effective at reducing emissions in the short term as total emissions during the 12-year programme are 59% lower than would have been experienced if the HFC emissions continued unabated. However, this spending level leaves the business at significant risk of refrigeration system failures as necessary investments in new systems are delayed resulting in an ageing, poorly performing estate. The model is further tested under different budget and policy scenarios and the financial, environmental, and business-risk implications are analysed. For example, under a more agg

Journal article

Sunny N, Mac Dowell N, Shah N, 2020, What is needed to deliver carbon-neutral heat using hydrogen and CCS?, ENERGY & ENVIRONMENTAL SCIENCE, Vol: 13, Pages: 4204-4224, ISSN: 1754-5692

Journal article

Papathanasiou MM, Stamatis C, Lakelin M, Farid S, Titchener-Hooker N, Shah Net al., 2020, Autologous CAR T-cell therapies supply chain: challenges and opportunities?, Cancer Gene Therapy, Vol: 27, Pages: 799-809, ISSN: 0929-1903

Chimeric antigen receptor (CAR) T cells are considered a potentially disruptive cancer therapy, showing highly promisingresults. Their recent success and regulatory approval (both in the USA and Europe) are likely to generate a rapidly increasingdemand and a need for the design of robust and scalable manufacturing and distribution models that will ensure timely andcost-effective delivery of the therapy to the patient. However, there are challenging tasks as these therapies are accompaniedby a series of constraints and particularities that need to be taken into consideration in the decision-making process. Here, wepresent an overview of the current state of the art in the CAR T cell market and present novel concepts that can debottleneckkey elements of the current supply chain model and, we believe, help this technology achieve its long-term potential.

Journal article

ODwyer E, Pan I, Charlesworth R, Butler S, Shah Net al., 2020, Integration of an energy management tool and digital twin for coordination and control of multi-vector smart energy systems, Sustainable Cities and Society, Vol: 62, Pages: 1-14, ISSN: 2210-6707

As Internet of Things (IoT) technologies enable greater communication between energy assets in smart cities, the operational coordination of various energy networks in a city or district becomes more viable. Suitable tools are needed that can harness advanced control and machine learning techniques to achieve environmental, economic and resilience objectives. In this paper, an energy management tool is presented that can offer optimal control, scheduling, forecasting and coordination services to energy assets across a district, enabling optimal decisions under user-defined objectives. The tool presented here can coordinate different sub-systems in a district to avoid the violation of high-level system constraints and is designed in a generic fashion to enable transferable use across different energy sectors. The work demonstrates the potential for a single open-source optimisation framework to be applied across multiple energy vectors, providing local government the opportunity to manage different assets in a coordinated fashion. This is shown through case studies that integrate low-carbon communal heating for social housing with electric vehicle charge-point management to achieve high-level system constraints and local government objectives in the borough of Greenwich, London. The paper illustrates the theoretical methodology, the software architecture and the digital twin-based testing environment underpinning the proposed approach.

Journal article

Wu N, Zhan X, Zhu X, Zhang Z, Lin J, Xie S, Meng C, Cao L, Wang X, Shah N, Zheng X, Zhao Yet al., 2020, Analysis of biomass polygeneration integrated energy system based on a mixed-integer nonlinear programming optimization method, JOURNAL OF CLEANER PRODUCTION, Vol: 271, ISSN: 0959-6526

Journal article

Aunedi M, Pantaleo AM, Kuriyan K, Strbac G, Shah Net al., 2020, Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems, Applied Energy, Vol: 276, Pages: 1-18, ISSN: 0306-2619

Decarbonisation of the heating and cooling sector is critical for achieving long-term energy and climate change objectives. Closer integration between heating/cooling and electricity systems can provide additional flexibility required to support the integration of variable renewables and other low-carbon energy sources. This paper proposes a framework for identifying cost-efficient solutions for supplying district heating systems within both operation and investment timescales, while considering local and national-level interactions between heat and electricity infrastructures. The proposed optimisation model minimises the levelised cost of a portfolio of heating technologies, and in particular Combined Heat and Power (CHP) and polygeneration systems, centralised heat pumps (HPs), centralised boilers and thermal energy storage (TES). A number of illustrative case studies are presented, quantifying the impact of renewable penetration, electricity price volatility, local grid constraints and local emission targets on optimal planning and operation of heat production assets. The sensitivity analysis demonstrates that the cost-optimal TES capacity could increase by 41–134% in order to manage a constraint in the local electricity grid, while in systems with higher RES penetration reflected in higher electricity price volatility it may be optimal to increase the TES capacity by 50–66% compared to constant prices, allowing centralised electric HP technologies to divert excess electricity produced by intermittent renewable generators to the heating sector. This confirms the importance of reflecting the whole-system value of heating technologies in the underlying cost-benefit analysis of heat networks.

Journal article

Cremi MR, Pantaleo AM, van Dam KH, Shah Net al., 2020, Optimal design and operation of an urban energy system applied to the Fiera Del Levante exhibition centre, Applied Energy, Vol: 275, Pages: 1-22, ISSN: 0306-2619

To move from centralised fossil fuel-based energy systems, synergies between distributed renewable generation, storage and demand-side strategies can be exploited to lower environmental impact and costs. This paper proposes an optimisation model for the techno-economic assessment of energy management strategies with a short-term investment horizon aimed at business managers and decision-makers in the commercial sector. The main novelty is the selection of a combination of on-site technologies and peak shaving strategies to minimise energy costs under time-of-use electricity tariffs, and the adaptation of a general methodology for a specific socio-technical context under seasonal loads. The “Fiera del Levante” exhibition centre in the city of Bari is selected due to the high seasonality of its electricity demand. The optimal solution uses a combined system with photovoltaics, diesel-fired and gas-fired combined-heat-and-power, including part-load operation and electric storage. The cost minimisation scenario reports up to 20% cost savings and 35% carbon emission savings with a 1MWp photovoltaic plant, compared to the baseline. This presents a five-year return on investment of 75%, and levelized cost of energy of €0.14 kWh−1. When coupled with a lithium-ion battery, solar energy brings up to 60% carbon emission savings through load shifting strategies, though this reduces the five-year return on investment by 9%. This hybrid setup is not financially competitive in the Italian retail market, but a hypothetical 25% rise of the grid import prices would make it economically viable. The proposed model is flexible and can be adapted to commercial end-users, providing decision-support in urban energy systems under local conditions.

Journal article

Ayoub AN, Gaigneux A, Le Brun N, Acha S, Shah Net al., 2020, The development of a low-carbon roadmap investment strategy to reach Science Based Targets for commercial organisations with multi-site properties, Building and Environment, Vol: 186, Pages: 1-17, ISSN: 0360-1323

The Paris Climate Agreement has motivated commercial organisations to set and work towards Science Based Targets, a realignment of greenhouse gas emissions in line with climate science. This work presents a modelling framework to develop cost-effective decarbonisation investment programs that address electricity and heat carbon emissions in organisations with multiple properties. The case study takes a set of 60 supermarkets in the UK and evaluates the techno-economic viability of installing biomethane combined heat and power engines and photovoltaic panels to make them zero carbon buildings. Simulation results from the batch of buildings offer the financial and environmental benefits at each site and generates a set of regression coefficients which are then applied into an optimisation problem. Solving the optimisation yields the decarbonisation investment strategy for the estate up to 2050; indicating the preferred sequence of investments the company needs to undertake to embark upon an effective low-carbon roadmap. A sensitivity analysis compliments the study to understand how market and policy externalities may influence roadmaps. Results suggest a CAPEX ranging from £57-£80 million is required to deliver an ambitious decarbonisation plan, while OPEX and carbon savings benefits range between £197 and £683 million and 461–715 ktCO2e; respectively. The case study highlights that although carbon targets can be achieved by 2030, the 2050 targets are more challenging to meet; suggesting additional technologies and policies should be considered and implemented. The framework serves as a blueprint of how modelling can assist decision-makers in reducing their carbon footprint cost-effectively to reach Science Based Targets.

Journal article

Le Brun N, Simpson M, Acha S, Shah N, Markides CNet al., 2020, Techno-economic potential of low-temperature, jacket-water heat recovery from stationary internal combustion engines with organic Rankine cycles: A cross-sector food-retail study, Applied Energy, Vol: 274, Pages: 1-14, ISSN: 0306-2619

We examine the opportunities and challenges of deploying integrated organic Rankine cycle (ORC) engines to recover heat from low-temperature jacket-water cooling circuits of small-scale gas-fired internal combustion engines (ICEs), for the supply of combined heat and power (CHP) to supermarkets. Based on data for commercially-available ICE and ORC engines, a techno-economic model is developed and applied to simulate system performance in real buildings. Under current market trends and for the specific (low-temperature) ICE + ORC CHP configuration investigated here, results show that the ICE determines most economic savings, while the ORC engine does not significantly impact the integrated CHP system performance. The ORC engines have long payback times (4–9 years) in this application, because: (1) they do not displace high-value electricity, as the value of exporting electricity to the grid is low, and (2) it is more profitable to use the heat from the ICEs for space heating rather than for electricity conversion. Commercial ORC engines are most viable (payback ≈ 4 years) in buildings with high electrical demands and low heat-to-power ratios. The influence of factors such as the ORC engine efficiency, capital cost and energy prices is also evaluated, highlighting performance gaps and identifying promising areas for future research.

Journal article

Acha Izquierdo S, Le Brun N, Damaskou M, Fubara TC, Mulgundmath V, Markides C, Shah Net al., 2020, Fuel cells as combined heat and power systems in commercial buildings: A case study in the food-retail sector, Energy, Vol: 206, Pages: 1-13, ISSN: 0360-5442

This work investigates the viability of fuel cells (FC) as combined heat and power (CHP) prime movers in commercial buildings with a specific focus on supermarkets. Up-to-date technical data from a FC manufacturing company was obtained and applied to evaluate their viability in an existing food-retail building. A detailed optimisation model for enhancing distributed energy system management described in previous work is expanded upon to optimise the techno-economic performance of FC-CHP systems. The optimisations employ comprehensive techno-economic datasets that reflect current market trends. Outputs highlight the key factors influencing the economics of FC-CHP projects. Furthermore, a comparative analysis against a competing internal combustion engine (ICE) CHP system is performed to understand the relative techno-economic characterisitcs of each system. Results indicate that FCs are becoming financially competitive although ICEs are still a more attractive option. For supermarkets, the payback period for installing a FC system is 4.7–5.9 years vs. 4.0–5.6 years for ICEs when policies are considered. If incentives are removed, FC-CHP systems have paybacks in the range 6–10 years vs. 5–8.5 years for ICE-based systems. A sensitivity analysis under different market and policy scenarios is performed, offering insights into the performance gap fuel cells face before becoming more competitive.

Journal article

Kis Z, Kontoravdi K, Dey AK, Shattock R, Shah Net al., 2020, Rapid development and deployment of high-volumevaccines for pandemic response, Journal of Advanced Manufacturing and Processing, Vol: 2, Pages: 1-10, ISSN: 2637-403X

Overcoming pandemics, such as the current Covid‐19 outbreak, requires the manufacture of several billion doses of vaccines within months. This is an extremely challenging task given the constraints in small‐scale manufacturing for clinical trials, clinical testing timelines involving multiple phases and large‐scale drug substance and drug product manufacturing. To tackle these challenges, regulatory processes are fast‐tracked, and rapid‐response manufacturing platform technologies are used. Here, we evaluate the current progress, challenges ahead and potential solutions for providing vaccines for pandemic response at an unprecedented scale and rate. Emerging rapid‐response vaccine platform technologies, especially RNA platforms, offer a high productivity estimated at over 1 billion doses per year with a small manufacturing footprint and low capital cost facilities. The self‐amplifying RNA (saRNA) drug product cost is estimated at below 1 USD/dose. These manufacturing processes and facilities can be decentralized to facilitate production, distribution, but also raw material supply. The RNA platform technology can be complemented by an a priori Quality by Design analysis aided by computational modeling in order to assure product quality and further speed up the regulatory approval processes when these platforms are used for epidemic or pandemic response in the future.

Journal article

Olympios AV, Le Brun N, Acha S, Shah N, Markides CNet al., 2020, Stochastic real-time operation control of a combined heat and power (CHP) system under uncertainty, Energy Conversion and Management, Vol: 216, Pages: 1-17, ISSN: 0196-8904

In this paper we present an effort to design and apply a multi-objective real-time operation controller to a combined heat and power (CHP) system, while considering explicitly the risk-return trade-offs arising from the uncertainty in the price of exported electricity. Although extensive research has been performed on theoretically optimizing the design, sizing and operation of CHP systems, less effort has been devoted to an understanding of the practical challenges and the effects of uncertainty in implementing advanced algorithms in real-world applications. In this work, a two-stage control architecture is proposed which applies an optimization framework to a real CHP operation application involving intelligent communication between two controllers to monitor and control the engine continuously. Since deterministic approaches that involve no measure of uncertainty provide limited insight to decision-makers, the methodology then proceeds to develop a stochastic optimization technique which considers risk within the optimization problem. The uncertainty in the forecasted electricity price is quantified by using the forecasting model’s residuals to generate prediction intervals around each forecasted electricity price. The novelty of the proposed tool lies in the use of these prediction intervals to formulate a bi-objective function that represents a compromise between maximizing the expected savings and minimizing the associated risk, while satisfying specified environmental objectives. This allows decision-makers to operate CHP systems according to the risk they are willing to take. The actual operation costs during a 40–day trial period resulting from the installation of the dynamic controller on an existing CHP engine that provides electricity and heat to a supermarket are presented. Results demonstrate that the forecasted electricity price almost always falls within the developed prediction intervals, achieving savings of 23% on energy costs against

Journal article

Jing R, Kuriyan K, Lin J, Shah N, Zhao Yet al., 2020, Quantifying the contribution of individual technologies in integrated urban energy systems – A system value approach, Applied Energy, Vol: 266, ISSN: 0306-2619

Integrated urban energy systems satisfy energy demands in a cost-effective manner by efficiently combining diverse technologies and energy saving strategies. However, the contribution of an individual technology within a complex system is difficult to quantify. This study introduces a generalized “system value” approach to quantify the contribution of an individual design decision towards improving the system design (e.g., achieving a lower cost design). It measures the contribution of an individual technology to the whole system in the range between two benchmarks that respectively represent complete exclusion of the technology and the optimal penetration level. The method is based on a technology-rich Mixed Integer Linear Programming (MILP) model for optimal design of urban energy systems. The model considers multi-energy supply technologies, networks, storage technologies and various energy saving strategies. A stochastic formulation is further developed to quantify uncertainties of the system value. The system values of nine kinds of energy supply technologies and three categories of energy-saving strategies are quantified via a case study, which illustrates the variation in the system values for individual technologies with different levels of penetration, and multi-energy supply technologies can have a large impact in integrated systems.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00005330&limit=30&person=true