Imperial College London

Professor Nilay Shah OBE FREng

Faculty of EngineeringDepartment of Chemical Engineering

Professor of Process Systems Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 6621n.shah

 
 
//

Assistant

 

Miss Jessica Baldock +44 (0)20 7594 5699

 
//

Location

 

ACEX 522ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

677 results found

Sharifzadeh M, Sadeqzadeh M, Nejadghaffar Borhani T, Guo M, Murthy Konda NVSN, Cortada Garcia M, Wang L, Hallett J, Shah Net al., 2019, The multiscale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions, Progress in Energy and Combustion Science, Vol: 71, Pages: 1-80, ISSN: 1873-216X

Biomass fast pyrolysis is potentially one of the cheapest routes toward renewable liquid fuels. Its commercialization, however, poses a multi-scale challenge, which starts with the characterization of feedstock, products and reaction intermediates at molecular scales, and continues with understanding the complex reaction network taking place in different reactor configurations, and in the case of catalytic pyrolysis and upgrading on different catalysts. In addition, crude pyrolysis oil is not immediately usable in the current energy infrastructure, due to undesirable properties such as low energy content and corrosiveness as a result of its high oxygenate content. It, therefore, needs to be upgraded and fractionated to desired specifications. While various types of pyrolysis reactors and upgrading technologies are under development, knowledge transfer and closing the gap between theory and application requires model development. In-depth understanding of the reaction mechanisms and kinetics should be combined with the knowledge of multi-scale transport phenomena to enable design, optimization, and control of complex pyrolysis reactors. Finally, underpinning economic and environmental impacts of biofuel production requires expanding the system boundaries to include the overall process and supply chain. The present contribution aims at providing a comprehensive multi-scale review that discusses the state of the art of each of these aspects, as well as their multi-scale interactions. The study is mainly focused on fast pyrolysis, although reference to other types of pyrolysis technologies is made for the sake of comparison and knowledge transfer.

Journal article

Sharifzadeh M, Hien RKT, Shah N, 2019, China's roadmap to low-carbon electricity and water: Disentangling greenhouse gas (GHG) emissions from electricity-water nexus via renewable wind and solar power generation, and carbon capture and storage, Applied Energy, Vol: 235, Pages: 31-42, ISSN: 0306-2619

Electricity and water form an intricate nexus, in that water is crucial for power generation, and electricity (or other primary forms of energy) is the key enabler for water purification and waste-water treatment. Nonetheless, both energy conversion and water purification result in substantial amounts of greenhouse gas (GHG) emissions. These negative interactions with potential “snowball” effect, can be decoupled via the deployment of renewable power generation, and carbon capture from fossil-fuelled technologies. However, such retrofits pose new challenges as wind and solar energy exhibit intermittent generation patterns. In addition, integrating thermal power plants with carbon capture and storage (CCS) imposes energy penalties and increases water requirements. In the present research, an optimization framework is developed which enables systematic decision-making for the retrofit of existing power and water infrastructure as well as investment in renewable and green technologies. A key aspect of the applied framework is the simultaneous optimization of design and operational decisions in the presence of uncertainties in the water demand, electricity demand, as well as wind and solar power availability. The proposed methodology is demonstrated for the case of the water-electricity nexus in China, and provides in-depth insights into regional characteristics of low carbon electricity generation, and their implications for water purification and wastewater treatment, demonstrating a roadmap towards sustainable energy and electricity.

Journal article

Staffell I, Scamman D, Velazquez Abad A, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KRet al., 2019, The role of hydrogen and fuel cells in the global energy system, Energy and Environmental Science, Vol: 12, Pages: 463-491, ISSN: 1754-5692

Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situationof only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium-term future no longer seems anunrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world.

Journal article

Mazur C, Hoegerle Y, Brucoli M, Van Dam K, Guo M, Markides C, Shah Net al., 2019, A holistic resilience framework development for rural power systems in emerging economies, Applied Energy, Vol: 235, Pages: 219-232, ISSN: 0306-2619

Infrastructure and services within urban areas of developed countries have established reliable definitions of resilience and its dependence on various factors as an important pathway for achieving sustainability in these energy systems. However, the assessment, design, building and maintenance of power systems situated in rural areas in emerging economies present further difficulties because there is no a clear framework for such circumstances. Aiming to address this issue, this paper combines different visions of energy-related resilience both in general and under rural conditions in order to provide a robust practical framework for local and international stakeholders to derive the right actions in the rural context of emerging economies. An in-depth review is implemented to recompile information of resilience in general, in energy systems and in rural areas in particular, and a number of existing frameworks is also consulted. In order to acknowledge the particular circumstances and identify the important factors influencing the resilience of rural electrification in emerging economies, a holistic rural power system resilience framework is developed and presented. This consists of twenty-one indicators for technical resilience, eight indicators for social resilience, and thirteen indicators for economic resilience. This framework can be used by system owners and operators, policy makers, NGOs and communities to ensure the longevity of power systems. This work also paves the way for the creation of appropriate and effective resilience standards specifically targeted for application in these regions - aiming to achieve the delivery of global and local sustainability goals.

Journal article

Kis Z, Shattock R, Shah N, Kontoravdi Ket al., 2019, Emerging technologies for low-cost, rapid vaccine manufacture, Biotechnology Journal, Vol: 14, ISSN: 1860-6768

To stop the spread of future epidemics and meet infant vaccination demands in low‐ and middle‐income countries, flexible, rapid and low‐cost vaccine development and manufacturing technologies are required. Vaccine development platform technologies that can produce a wide range of vaccines are emerging, including: a) humanized, high‐yield yeast recombinant protein vaccines; b) insect cell‐baculovirus ADDomer vaccines; c) Generalized Modules for Membrane Antigens (GMMA) vaccines; d) RNA vaccines. Herein, existing and future platforms are assessed in terms of addressing challenges of scale, cost, and responsiveness. To assess the risk and feasibility of the four emerging platforms, the following six metrics are applied: 1) technology readiness; 2) technological complexity; 3) ease of scale‐up; 4) flexibility for the manufacturing of a wide range of vaccines; 5) thermostability of the vaccine product at tropical ambient temperatures; and 6) speed of response from threat identification to vaccine deployment. The assessment indicated that technologies in the order of increasing feasibility and decreasing risk are the yeast platform, ADDomer platform, followed by RNA and GMMA platforms. The comparative strengths and weaknesses of each technology are discussed in detail, illustrating the associated development and manufacturing needs and priorities.

Journal article

Oluleye G, Wigh D, Shah N, Napoli M, Hawkes Aet al., 2019, A framework for biogas exploitation in Italian waste water treatment plants, Chemical Engineering Transactions, Vol: 76, Pages: 991-996

Copyright © 2019, AIDIC Servizi S.r.l. Effective utilisation of biogas is an important step in increasing usage of renewable energy, due to the great flexibility that solar and wind power in particular lacks. Biogas generated through anaerobic digestion (AD) of sewage sludge addresses environmental concerns together with creating electricity generation potential. There is currently no optimisation-based decision-support framework to determine the best use of biogas from a Waste Water Treatment Plant (WWTP), and provide a market outlook for each of the options. This work proposes a novel multi-period Mixed Integer Linear Program (MILP) model for dispatch and selection of technologies capable of exploiting biogas produced from sludge. The novelty is also highlighted by extrapolating the optimised results to a broader analysis of 855 Italian WWTPs with Population Equivalent (P.E.) > 20,000. The use of real input data provides a unique added value to the work. The modelling framework is applied to several case studies. Results show that 7–23 % savings in operating costs are possible from integrating three systems to exploit biogas, and the trade-offs between capital and operating costs affect the optimal system choice. Furthermore, market driven scenarios are used to analyse how to improve the economic performance.

Journal article

Cooper N, Panteli A, Shah N, 2019, A biomass supply chain optimization framework with linear approximation of biomass yield distributions for improved land use

Biomass and the bio-economy have strong potential to help shift dependency away from petroleum. Supply chain optimisation (SCO) has been used to help other industries and can be used to boost biomass industry viability. Biomass supply chain models frequently average the biomass yield of large tracts of land in their calculations. However, there can be large variation in the biomass yield within those tracts, losing useful information. This work presents a biomass SCO framework which approximates the available quality of land by piecewise linearly approximation of the biomass yield distribution, and incorporates this information into the optimisation. The linear estimates of the biomass yield distributions allow the SCO model to make more informed decisions about quantity and location of biomass growth operations, affecting all downstream decisions. A case study of mainland Great Britain has been examined using the framework to illustrate the impact of retaining biomass yield information in the optimisation, versus averaging the yield across tracts of land. The case study found that using biomass yield linear estimates reduced the overall land usage by 10%. Further, it improved biomass output, which increased the quantity of bio-products produced. All of this led to an increase in the overall profit.

Conference paper

Cooper N, Panteli A, Shah N, 2019, Linear approximations for improved biomass supply chain optimizations applied to biomass yield distribution for reduced land usage

Conference paper

Zhang X, Strbac G, Shah N, Teng F, Pudjianto Det al., 2019, Whole-system assessment of the benefits of integrated electricity and heat system, IEEE Transactions on Smart Grid, Vol: 10, Pages: 1132-1145, ISSN: 1949-3061

The interaction between electricity and heat systems will play an important role in facilitating the cost effective transition to a low carbon energy system with high penetration of renewable generation. This paper presents a novel integrated electricity and heat system model in which, for the first time, operation and investment timescales are considered while covering both the local district and national level infrastructures. This model is applied to optimize decarbonization strategies of the UK integrated electricity and heat system, while quantifying the benefits of the interactions across the whole multi-energy system, and revealing the trade-offs between portfolios of (a) low carbon generation technologies (renewable energy, nuclear, CCS) and (b) district heating systems based on heat networks (HN) and distributed heating based on end-use heating technologies. Overall, the proposed modeling demonstrates that the integration of the heat and electricity system (when compared with the decoupled approach) can bring significant benefits by increasing the investment in the heating infrastructure in order to enhance the system flexibility that in turn can deliver larger cost savings in the electricity system, thus meeting the carbon target at a lower whole-system cost.

Journal article

Al-Mohannadi DM, Linke P, Shah N, 2019, A multi-objective multi-period optimization of carbon integration networks in industrial parks, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 487-492, ISBN: 978-0-12-819939-8

Book chapter

Bascone D, Galvanin F, Shah N, Garcia-Munoz Set al., 2019, Modelling and Nonlinear Model Predictive Control of a Twin Screw Feeder, 15th IFAC Workshop on Time Delay Systems (TDS) jointly held with the 7th IFAC Symposium on System Structure and Control (SSSC), Publisher: ELSEVIER, Pages: 156-161, ISSN: 2405-8963

Conference paper

d'Amore F, Sunny N, Iruretagoyena D, Bezzo F, Shah Net al., 2019, Optimising European supply chains for carbon capture, transport and sequestration, including uncertainty on geological storage availability, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 199-204, ISBN: 978-0-12-819939-8

Book chapter

van Dam KH, Feng B, Wang X, Guo M, Shah N, Passmore Set al., 2019, Model-based decision-support for waste-to-energy pathways in New South Wales, Australia, Editors: Kiss, Zondervan, Lakerveld, Ozkan, Publisher: ELSEVIER SCIENCE BV, Pages: 1765-1770, ISBN: 978-0-12-819940-4

Book chapter

Papathanasiou MM, Burnak B, Katz J, Muller-Spath T, Morbidelli M, Shah N, Pistikopoulos ENet al., 2019, CONTROL OF SMALL-SCALE CHROMATOGRAPHIC SYSTEMS UNDER DISTURBANCES, Editors: Munoz, Laird, Realff, Publisher: ELSEVIER SCIENCE BV, Pages: 269-274

Book chapter

Jing R, Wang M, Liang H, Wang X, Li N, Shah N, Zhao Yet al., 2018, Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints, Applied Energy, Vol: 231, Pages: 534-548, ISSN: 0306-2619

By connecting stand-alone energy systems, the neighborhood-level urban energy network can serve several buildings in a more economic and ecological manner. In some cases, in order to achieve the best performance of the entire network, the benefit of some buildings within the network may not be guaranteed. Few attentions have been paid to the benefit allocation fairness for energy networks. This study proposes novel cost and emission benefit allocation constraints inspired from cooperative Game theory to ensure that each involved building shares the benefit together. A Mixed Integer Linear Programming (MILP) model is developed to investigate the impacts of benefit allocation constraints. The model offers different network topologies, i.e., centralized mode and distributed mode. Multi-objective optimization and decision-making are further conducted to assess the trade-offs between different objectives via generating the Pareto frontier. Through an illustrative case study, a three-building neighborhood-level energy network is optimal designed in Shanghai, China. The results indicate that when benefit allocation is considered, the solution space will slightly shrink compared to the scenario not considering benefit allocation. Meanwhile, distributed mode achieves better performance than the centralized mode. Overall, the analyses provide a solid approach to enhance infrastructure planning for urban energy networks particularly when the stakeholders of each participating building within a network are different.

Journal article

Wang X, Li L, Palazoglu A, El-Farra NH, Shah Net al., 2018, Optimization and control of offshore wind farms with energy storage systems, 10th IFAC Symposium on Advanced Control of Chemical Processes (ADCHEM), Publisher: ELSEVIER SCIENCE BV, Pages: 862-867, ISSN: 2405-8963

Conference paper

Thaore V, Tsourapas D, Shah N, Kontoravdi Cet al., 2018, Techno-economic analysis of cell free synthesis route for monoclonal antibody production, 3rd International Symposium on Continuous Manufacturing of Pharmaceuticals

With the rise of engineered protein therapeutics, including fusion proteins, recombinant enzymes and various difficult-to-express antibodies and other protein formats, there is an increased effort to establish cell-free protein expression systems (CFPSs) that can overcome the limitations of cell-based production in terms of energy demand for growth versus recombinant protein production. Mammalian CFPS efforts have been based on active Chinese hamster ovary (CHO) cell lysates, which have already been shown to be able to produce antibodies and erythropoietin among others. These systems offer direct access to the synthesis reaction components and environment, presenting the opportunity for increased control, automation and, thus, manufacturing consistency. Additionally, in CFPS the generation of the cell extracts is separate from the protein production steps, which simplifies the supply chain management for the manufacturing process. However, the various components of CFPS are costly, therefore calling for a thorough comparison with the whole cell-based production route. In this work, we designed the process model for manufacturing of antibodies using CHO cell lysates. The process model is used to evaluate the overall process economics: total capital investment, annual operating cost, and cost of goods (COG/g) of mAb and production capacity (kg antibody/year). The techno-economic assessment shows that the viability of the cell-free route for protein production at industrial scale necessitates a significant increase in product yield and could further increase with the on-site manufacturing of high cost reagents, particularly enzymes.

Poster

Wang X, Li L, Palazoglu A, El-Farra NH, Shah Net al., 2018, Optimization and control of offshore wind systems with energy storage, Energy Conversion and Management, Vol: 173, Pages: 426-437, ISSN: 0196-8904

Wind energy is widely exploited as a promising renewable energy source worldwide. In this article, an optimization method for the control and operation of the offshore wind farm as an integrated system considering its operational, economic and environmental impacts is proposed. The state of the offshore wind farm development, and the challenges faced by the offshore wind farms, including the challenges of economic costs, operational reliability, and environmental impacts are reviewed and summarized. A systematic methodology is proposed to optimize the costs of an offshore wind farm system based on a framework that extends from the supervisory level dispatch strategies to individual pitch control for load reduction and fatigue mitigation. This holistic approach is able to improve the efficiency and economic performance of a wind farm through overall system optimization, while explicitly operating each wind turbine using a formally designed control framework leading to an extension of their service lifespan. This work provides thorough introduction and innovative solutions for many economic and environmental issues in offshore wind farm development and has strong application potential.

Journal article

Kis Z, Koppelaar RHEM, Sule MN, Mensah FK, Wang X, Triantafyllidis C, Van Dam KH, Shah Net al., 2018, Framework for WASH sector data improvements in data-poor environments, applied to Accra, Ghana, Water, Vol: 10, ISSN: 2073-4441

Improvements in water, sanitation and hygiene (WASH) service provision are hampered by limited open data availability. This paper presents a data integration framework, collects the data and develops a material flow model, which aids data-based policy and infrastructure development for the WASH sector. This model provides a robust quantitative mapping of the complete anthropogenic WASH flow-cycle: from raw water intake to water use, wastewater and excreta generation, discharge and treatment. This approach integrates various available sources using a process-chain bottom-up engineering approach to improve the quality of WASH planning. The data integration framework and the modelling methodology are applied to the Greater Accra Metropolitan Area (GAMA), Ghana. The highest level of understanding of the GAMA WASH sector is achieved, promoting scenario testing for future WASH developments. The results show 96% of the population had access to improved safe water in 2010 if sachet and bottled water was included, but only 67% if excluded. Additionally, 66% of 338,000 m3 per day of generated wastewater is unsafely disposed locally, with 23% entering open drains, and 11% sewage pipes, indicating poor sanitation coverage. Total treated wastewater is <0.5% in 2014, with only 18% of 43,000 m3 per day treatment capacity operational. The combined data sets are made available to support research and sustainable development activities.

Journal article

Georgiou S, Shah N, Markides C, 2018, A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems, Applied Energy, Vol: 226, Pages: 1119-1133, ISSN: 0306-2619

Efficient and affordable electricity storage systems have a significant potential to support the growth and increasing penetration of intermittent renewable-energy generation into the grid from an energy system planning and management perspective, while differences in the demand and price of peak and off-peak electricity can make its storage of economic interest. Technical (e.g., roundtrip efficiency, energy and power capacity) as well as economic (e.g., capital, operating and maintenance costs) indicators are anticipated to have a significant combined impact on the competitiveness of any electricity storage technology or system under consideration and, ultimately, will crucially determine their uptake and implementation. In this paper, we present thermo-economic models of two recently proposed medium- to large-scale electricity storage systems, namely ‘Pumped-Thermal Electricity Storage’ (PTES) and ‘Liquid-Air Energy Storage’ (LAES), focusing on system efficiency and costs. The LAES thermodynamic model is validated against data from an operational pilot plant in the UK; no such equivalent PTES plant exists, although one is currently under construction. As common with most newly proposed technologies, the absence of cost data results to the economic analysis and comparison being a significant challenge. Therefore, a costing effort for the two electricity storage systems that includes multiple costing approaches based on the module costing technique is presented, with the overriding aim of conducting a preliminary economic feasibility assessment and comparison of the two systems. Based on the results, it appears that PTES has the potential to achieve higher roundtrip efficiencies, although this remains to be demonstrated. LAES performance is found to be significantly enhanced through the integration and utilisation of waste heat (and cold) streams. In terms of economics on the other hand, and at the system size intended for commercial applicat

Journal article

Thaore V, Moore S, Polizzi K, Freemont P, Shah N, Kontoravdi Cet al., 2018, Techno-economic evaluation of a cell-free syntheticbiochemistry route for raspberry ketone production atindustrial scale, Vaishali Thaore

Conference paper

Iruretagoyena Ferrer D, Sunny N, Chadwick D, Mac Dowell N, Shah Net al., 2018, Towards a low carbon economy via sorption enhanced water gas shift and alcohol reforming

Book chapter

Georgiou S, Acha S, Shah N, Markides Cet al., 2018, A generic tool for quantifying the energy requirements of glasshouse food production, Journal of Cleaner Production, Vol: 191, Pages: 384-399, ISSN: 0959-6526

Quantifying the use of resources in food production and its environmental impact is key to identifying distinctive measures which can be used to develop pathways towards low-carbon food systems. In this paper, a first-principle modelling approach is developed, referred to as gThermaR (Glasshouse-Thermal Requirements). gThermaR is a generic tool that focuses on the energy requirements of protected heated production, by integrating holistic energy, carbon, and cost modelling, food production, data analytics and visualization. The gThermaR tool employs historic data from weather stations, growing schedules and requirements specific to grower and product needs (e.g. set-point temperatures, heating periods, etc.) in order to quantify the heating and cooling requirements of glasshouse food production. In the present paper, a case study is reported that employs a database compiled for the UK. Another relevant feature of the tool is that it can quantify the effects that spatial and annual weather trends can have on these heating and cooling requirements. The main contribution of this work, therefore, concerns the development a tool that can provide a simple integrated approach for performing a wide range of analyses relevant to the thermal requirements of heated glasshouses. The tool is validated through collaborations with industrial partners and showcased in a case study of a heated glasshouse in the UK, offering the capacity to benchmark and compare different glasshouse types and food growth processes. Results from the case study indicate that a significant reduction in the heating requirement and, therefore, carbon footprint, of the facility can be achieved by improving key design and operational parameters. Results indicate savings in the peak daily and annual heating requirements of 44-50% and 51-57% respectively, depending on the region where the glasshouse is located. This improvement is also reflected in the carbon emissions and operating costs for the different en

Journal article

Panteli A, Giarola S, Shah N, 2018, Supply chain mixed integer linear program model integrating a biorefining technology superstructure, Industrial & Engineering Chemistry Research, Vol: 57, Pages: 9849-9865, ISSN: 0888-5885

A crucial element of the quest of curbing carbon dioxide emissions is deemed to rely on a biobased economy, which will rely on the development of financially sustainable biorefining systems enabling a full exploitation of lignocellulosic biomass (and its macrocomponents such as cellulose, hemicellulose, and lignin) for the coproduction of biofuels and bioderived platform chemicals. In this work, a general modeling framework conceived to steer decision-making regarding the strategic design and systematic planning of advanced biorefining supply networks is presented. The design task is formulated as a mixed integer linear program which accounts for the maximization of the supply chain profit, considering multiechelon, multiperiod, multifeedstock, and multiproduct aspects as well as spatially explicit features. The applicability of the proposed model, along with the use of a bilevel decomposition approach, are demonstrated with a case study of lignocellulose-based biorefining production systems in the South-West of Hungary. Results show the effectiveness of the tool in the decision-making regarding the systematic design of advanced biorefining SC networks. An economic analysis of different design configurations (i.e., centralized and distributed scenarios) through a holistic evaluation of the entire biobased SC, integrating technology superstructure, shows that both instances generate profitable investment decisions that could be equally trusted by the decision-maker unless regional restrictions are applied.

Journal article

Chen W, Sharifzadeh M, Shah N, Livingston AGet al., 2018, Iterative peptide synthesis in membrane cascades: Untangling operational decisions, Computers and Chemical Engineering, Vol: 115, Pages: 275-285, ISSN: 0098-1354

Membrane enhanced peptide synthesis (MEPS) combines liquid-phase synthesis with membrane filtration, avoiding time-consuming separation steps such as precipitation and drying. Although performing MEPS in a multi-stage cascade is advantageous over a single-stage configuration in terms of overall yield, this is offset by the complex combination of operational variables such as the diavolume and recycle ratio in each diafiltration process. This research aims to tackle this problem using dynamic process simulation. The results suggest that the two-stage membrane cascade improves the overall yield of MEPS significantly from 72.2% to 95.3%, although more washing is required to remove impurities as the second-stage membrane retains impurities together with the anchored peptide. This clearly indicates a link between process configuration and operation. While the case study is based on the comparison of single-stage and two-stage MEPS, the results are transferable to other biopolymers such as oligonucleotides, and more complex system configurations (e.g. three-stage MEPS).

Journal article

Zhang D, del Rio-Chanona EA, Shah N, 2018, Life cycle assessments for biomass derived sustainable biopolymer &amp; energy co-generation, Sustainable Production and Consumption, Vol: 15, Pages: 109-118, ISSN: 2352-5509

Sustainable polymers derived from biomass have been considered as promising candidates to reduce the dependency on fossil based polymers. In this study, a conceptual process design was conducted for citrus waste derived biopolymer production with energy co-generation, and its eco-friendliness was evaluated through life cycle assessment by comparison against a petroleum derived polymer production process. Based on the current research, two original conclusions were proposed. The first one is that energy-efficient separation techniques are of critical importance for the design of eco-friendly chemical processes. Only focusing on the use of sustainable feedstocks with high conversion reactions cannot guarantee an environmentally-friendly final product. The second one is that biomass should be considered not only as a raw material, but more importantly, as an energy source for the sustainable synthesis of biochemicals. In other words, a sustainable process should be designed such that a portion of biomass is used to provide clean energy for process operation, with the rest converted for product generation.

Journal article

Thaore VB, Chadwick D, Shah N, 2018, Sustainable production of chemical intermediates for nylon manufacture: a techno-economic analysis for renewable production of caprolactone, Chemical Engineering Research and Design, Vol: 135, Pages: 140-152, ISSN: 1744-3598

Caprolactone is a precursor for the synthesis of caprolactam, the key monomer for nylon-6 which is produced globally at a scale of 4 million tonnes per annum. This work describes and assesses a bio-based production route to caprolactone from an agricultural residue, specifically corn stover, via glucose, fructose, 5-hydroxymethyl furfural (HMF) and 1,6-hexanediol. The material and energy balances, the cost efficiency, as well as on the potential reduction of greenhouse gas (GHG) emissions are reported and discussed. The developed process model was simulated in Aspen Plus™ with the optimization and energy integration performed for the entire process from corn stover to caprolactone. A sensitivity analysis was performed with consideration of various economic factors to explore the process economics. The results of the techno-economic and environmental assessment show that a bio-based caprolactone production process via glucose and HMF could be competitive with conventional hydrocarbon-based processes when major by-products are valorised and has a lower environmental impact. Areas where further investigation is needed to improve sustainable caprolactone production are identified and discussed.

Journal article

Noor S, Guo M, van Dam KH, Shah N, Wang Xet al., 2018, Energy demand side management with supply constraints: Game theoretic approach, Applied Energy Symposium and Forum on Renewable Energy Integration with Mini/Microgrid Systems (REM), Publisher: Elsevier, Pages: 368-373, ISSN: 1876-6102

The management of energy supply and demand is becoming more challenging in regions where the demand continues to grow rapidly and more intermittent renewable supply sources are added to the energy infrastructure. In this context, Demand Side Management (DSM) can be employed to improve reliability of supply and stretch the capacity limits of the existing grid infrastructure. A game theoretic approach for DSM model incorporating storage components is suggested in this paper for environments with supply constraints. The proposed model is able to not only reduce the Peak-to-Average ratio to benefit the electric grid, but also smoothen the dips in load profile caused by supply constraints.

Conference paper

Georgiou S, Shah N, Markides C, 2018, Potential for Carbon Savings from the Deployment of Liquid-Air and Pumped-Thermal Electricity Storage Systems, Offshore Energy and Storage 2018

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00005330&limit=30&person=true&page=7&respub-action=search.html