Imperial College London

Dr Nicky Whiffin

Faculty of MedicineNational Heart & Lung Institute

Research Fellow
 
 
 
//

Contact

 

n.whiffin

 
 
//

Location

 

Hammersmith HospitalHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

67 results found

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, ODonnell-Luria AH, Vallabh Minikel E, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly JM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi J, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Genome Aggregation Database gnomAD Consortium, Neale BM, Daly MJ, MacArthur DGet al., 2020, The mutational constraint spectrum quantified from variation in 141,456 humans, Nature, Vol: 581, Pages: 434-443, ISSN: 0028-0836

Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes critical for an organism’s function will be depleted for such variants in natural populations, while non-essential genes will tolerate their accumulation. However, predicted loss-of-function (pLoF) variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes1. Here, we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence pLoF variants in this cohort after filtering for sequencing and annotation artifacts. Using an improved human mutation rate model, we classify human protein-coding genes along a spectrum representing tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve gene discovery power for both common and rare diseases.

Journal article

Minikel EV, Karczewski KJ, Martin HC, Cummings BB, Whiffin N, Rhodes D, Alföldi J, Trembath RC, van Heel DA, Daly MJ, Genome Aggregation Database Production Team, Genome Aggregation Database Consortium, Schreiber SL, MacArthur DGet al., 2020, Evaluating potential drug targets through human loss-of-function genetic variation, Nature, Vol: 581, Pages: 459-464, ISSN: 0028-0836

Naturally occurring human genetic variants predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements cell and model organism knockout studies. Here we report three key findings regarding assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, where loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous “knockout” humans will await sample sizes ~1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains critical for removing artifacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human “knockout” studies and should guide interpretation of loss-of-function variants in drug development.

Journal article

Whiffin N, Armean IM, Kleinman A, Marshall JL, Minikel EV, Goodrich JK, Quaife NM, Cole JB, Wang Q, Karczewski KJ, Cummings BB, Francioli L, Laricchia K, Guan A, Alipanahi B, Morrison P, Baptista MAS, Merchant KM, Genome Aggregation Database Production Team, Genome Aggregation Database Consortium, Ware JS, Havulinna AS, Iliadou B, Lee J-J, Nadkarni GN, Whiteman C, 23andMe Research Team, Daly M, Esko T, Hultman C, Loos RJF, Milani L, Palotie A, Pato C, Pato M, Saleheen D, Sullivan PF, Alföldi J, Cannon P, MacArthur DGet al., 2020, The effect of LRRK2 loss-of-function variants in humans., Nature Medicine, ISSN: 1078-8956

Human genetic variants predicted to cause loss-of-function of protein-coding genes (pLoF variants) provide natural in vivo models of human gene inactivation and can be valuable indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes1,2. Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson's disease3,4, suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. While preclinical studies in model organisms have raised some on-target toxicity concerns5-8, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here, we systematically analyze pLoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD)9, 49,960 exome-sequenced individuals from the UK Biobank and over 4 million participants in the 23andMe genotyped dataset. After stringent variant curation, we identify 1,455 individuals with high-confidence pLoF variants in LRRK2. Experimental validation of three variants, combined with previous work10, confirmed reduced protein levels in 82.5% of our cohort. We show that heterozygous pLoF variants in LRRK2 reduce LRRK2 protein levels but that these are not strongly associated with any specific phenotype or disease state. Our results demonstrate the value of large-scale genomic databases and phenotyping of human loss-of-function carriers for target validation in drug discovery.

Journal article

Wang Q, Pierce-Hoffman E, Cummings BB, Alföldi J, Francioli LC, Gauthier LD, Hill AJ, O'Donnell-Luria AH, Genome Aggregation Database Production Team, Genome Aggregation Database Consortium, Karczewski KJ, MacArthur DGet al., 2020, Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes., Nat Commun, Vol: 11

Multi-nucleotide variants (MNVs), defined as two or more nearby variants existing on the same haplotype in an individual, are a clinically and biologically important class of genetic variation. However, existing tools typically do not accurately classify MNVs, and understanding of their mutational origins remains limited. Here, we systematically survey MNVs in 125,748 whole exomes and 15,708 whole genomes from the Genome Aggregation Database (gnomAD). We identify 1,792,248 MNVs across the genome with constituent variants falling within 2 bp distance of one another, including 18,756 variants with a novel combined effect on protein sequence. Finally, we estimate the relative impact of known mutational mechanisms - CpG deamination, replication error by polymerase zeta, and polymerase slippage at repeat junctions - on the generation of MNVs. Our results demonstrate the value of haplotype-aware variant annotation, and refine our understanding of genome-wide mutational mechanisms of MNVs.

Journal article

Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ, Evans DG, Roberts AM, Quaife NM, Schafer S, Rackham O, Alföldi J, O'Donnell-Luria AH, Francioli LC, Genome Aggregation Database Production Team, Genome Aggregation Database Consortium, Cook SA, Barton PJR, MacArthur DG, Ware JSet al., 2020, Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals., Nature Communications, Vol: 11, Pages: 1-12, ISSN: 2041-1723

Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein translation. Isolated reports have shown that variants that create or disrupt uORFs can cause disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences, we show that variants that create new upstream start codons, and variants disrupting stop sites of existing uORFs, are under strong negative selection. This selection signal is significantly stronger for variants arising upstream of genes intolerant to loss-of-function variants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of selection equivalent to coding missense variants. Finally, we identify specific genes where modification of uORFs likely represents an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-perturbing variants as an under-recognised functional class that contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data in studying non-coding variant classes.

Journal article

Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, de Marvao A, Dawes T, Felkin LE, Ahmad M, Theotokis PI, Edwards E, Ing AI, Thomson KL, Chan LLH, Sim D, Baksi AJ, Pantazis A, Roberts AM, Watkins H, Funke B, O'Regan D, Olivotto I, Barton PJR, Prasad SK, Cook SA, Ware JS, Walsh Ret al., 2020, Re-evaluating the genetic contribution of monogenic dilated cardiomyopathy, Circulation, Vol: 141, Pages: 387-398, ISSN: 0009-7322

Background: Dilated cardiomyopathy (DCM) is genetically heterogeneous, with >100 purported disease genes tested in clinical laboratories. However, many genes were originally identified based on candidate-gene studies that did not adequately account for background population variation. Here we define the frequency of rare variation in 2538 DCM patients across protein-coding regions of 56 commonly tested genes and compare this to both 912 confirmed healthy controls and a reference population of 60,706 individuals in order to identify clinically interpretable genes robustly associated with dominant monogenic DCM.Methods: We used the TruSight Cardio sequencing panel to evaluate the burden of rare variants in 56 putative DCM genes in 1040 DCM patients and 912 healthy volunteers processed with identical sequencing and bioinformatics pipelines. We further aggregated data from 1498 DCM patients sequenced in diagnostic laboratories and the ExAC database for replication and meta-analysis.Results: Truncating variants in TTN and DSP were associated with DCM in all comparisons. Variants in MYH7, LMNA, BAG3, TNNT2, TNNC1, PLN, ACTC1, NEXN, TPM1 and VCL were significantly enriched in specific patient subsets, with the last 2 genes potentially contributing primarily to early-onset forms of DCM. Overall, rare variants in these 12 genes potentially explained 17% of cases in the outpatient clinic cohort representing a broad range of adult DCM patients and 26% of cases in the diagnostic referral cohort enriched in familial and early-onset DCM. Whilst the absence of a significant excess in other genes cannot preclude a limited role in disease, such genes have limited diagnostic value since novel variants will be uninterpretable and their diagnostic yield is minimal.Conclusion: In the largest sequenced DCM cohort yet described, we observe robust disease association with 12 genes, highlighting their importance in DCM and translating into high interpretability in diagnostic testing. The

Journal article

Tayal U, Verdonschot J, Hazebroek M, Newsome S, Adriaans B, Bekkers S, Gulati A, Pua CJ, Halliday B, Lota AS, Whiffin N, Kanapeckaite L, Baruah R, Jarman J, Barton PJ, Ware JS, Pennell DJ, Donovan J, Frenneaux M, Cleland J, Cook S, Heymans S, Deo RC, Prasad SKet al., 2019, The Application of Machine Learning Tools in an Extensively Phenotyped Cohort of Patients With Dilated Cardiomyopathy Provides Novel Insights Into Disease Pathobiology and Prognosis, Scientific Sessions of the American-Heart-Association, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Walsh R, Mazzarotto F, Whiffin N, Buchan R, Li N, Felkin L, Thomson KL, Watkins H, Barton PJR, Olivotto I, Cook SA, Bezzina CR, Ware JSet al., 2019, Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases, 52nd Conference of the European-Society-of-Human-Genetics (ESHG), Publisher: NATURE PUBLISHING GROUP, Pages: 1720-1720, ISSN: 1018-4813

Conference paper

Whiffin N, Ware JS, O'Donnell-Luria A, 2019, Improving the understanding of genetic variants in rare disease with large-scale reference populations, JAMA: Journal of the American Medical Association, Vol: 322, Pages: 1305-1306, ISSN: 0098-7484

Journal article

Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H, Smith AM, Toepfer CN, Getz K, Gorham J, Patel P, Ito K, Willcox JA, Arany Z, Li J, Owens AT, Govind R, Nuñez B, Mazaika E, Bayes-Genis A, Walsh R, Finkelman B, Lupon J, Whiffin N, Serrano I, Midwinter W, Wilk A, Bardaji A, Ingold N, Buchan R, Tayal U, Pascual-Figal DA, de Marvao A, Ahmad M, Garcia-Pinilla JM, Pantazis A, Dominguez F, John Baksi A, O'Regan DP, Rosen SD, Prasad SK, Lara-Pezzi E, Provencio M, Lyon AR, Alonso-Pulpon L, Cook SA, DePalma SR, Barton PJR, Aplenc R, Seidman JG, Ky B, Ware JS, Seidman CEet al., 2019, Genetic variants associated with cancer therapy-induced cardiomyopathy, Circulation, Vol: 140, Pages: 31-41, ISSN: 0009-7322

BackgroundCancer therapy-induced cardiomyopathy (CCM) is associated with cumulative drug exposures and pre-existing cardiovascular disorders. These parametersincompletely account for substantial inter-individual susceptibility to CCM. We hypothesized that rare variants in cardiomyopathy genes contribute to CCM.MethodsWe studied 213 CCM patients from three cohorts: retrospectively recruited adults with diverse cancers (n=99), prospectively phenotyped breast cancer adults (n=73) and prospectively phenotyped children with acute myeloid leukemia (n=41). Cardiomyopathy genes, including nine pre-specified genes were sequenced. The prevalence of rare variants was compared between CCM cohorts and The Cancer Genome Atlas (TCGA) participants(n=2053), healthy volunteers(n=445), and ancestry-matchedreference population. Clinical characteristics and outcomes were assessed, stratified by genotypes. A prevalent CCM genotype was modeled in anthracycline-treated mice.ResultsCCM was diagnosed 0.4-9 years after chemotherapy; 90% of these patients received anthracyclines. Adult CCM patients had cardiovascular risk factors similar to the U.S. population. Among nine prioritized genes CCM patients had more rare protein-altering variants than comparative cohorts (p≤1.98e-04). Titin-truncating variants (TTNtv) predominated, occurring in 7.5% CCM patients versus 1.1% TCGA participants (p=7.36e-08), 0.7% healthy volunteers (p=3.42e-06), and 0.6% reference population (p=5.87e-14). Adult CCM patients with TTNtv experienced more heart failure and atrial fibrillation (p=0.003)and impaired myocardial recovery (p=0.03) than those without.Consistent with human data, anthracycline-treated TTNtv mice and isolated TTNtv cardiomyocytes showed sustained contractile dysfunction unlike wildtype (p=0.0004 and p<0.002, respectively).ConclusionsUnrecognized rare variants in cardiomyopathy-associated genes, particularly TTNtv, increased the risk for CCM in children and adults, and adverse cardiac events

Journal article

Corden B, Jarman J, Whiffin N, Tayal U, Buchan R, Sehmi J, Harper A, Midwinter W, Lascelles K, Mason M, Baksi J, Pantazis A, Pennell D, Barton P, Prasad S, Wong T, Cook S, Ware Jet al., 2019, Association between titin truncating variants and life-threatening cardiac arrhythmias in patients with dilated cardiomyopathy and implantable defibrillator, JAMA Network Open, Vol: 2, Pages: 1-12, ISSN: 2574-3805

Importance There is a need for better arrhythmic risk stratification in nonischemic dilated cardiomyopathy (DCM). Titin-truncating variants (TTNtvs) in the TTN gene are the most common genetic cause of DCM and may be associated with higher risk of arrhythmias in patients with DCM.Objective To determine if TTNtv status is associated with the development of life-threatening ventricular arrhythmia and new persistent atrial fibrillation in patients with DCM and implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy defibrillator (CRT-D) devices.Design, Setting, and Participants This retrospective, multicenter cohort study recruited 148 patients with or without TTNtvs who had nonischemic DCM and ICD or CRT-D devices from secondary and tertiary cardiology clinics in the United Kingdom from February 1, 2011, to June 30, 2016, with a median (interquartile range) follow-up of 4.2 (2.1-6.5) years. Exclusion criteria were ischemic cardiomyopathy, primary valve disease, congenital heart disease, or a known or likely pathogenic variant in the lamin A/C gene. Analyses were performed February 1, 2017, to May 31, 2017.Main Outcome and Measures The primary outcome was time to first device-treated ventricular tachycardia of more than 200 beats/min or first device-treated ventricular fibrillation. Secondary outcome measures included time to first development of persistent atrial fibrillation.Results Of 148 patients recruited, 117 adult patients with nonischemic DCM and an ICD or CRT-D device (mean [SD] age, 56.9 [12.5] years; 76 [65.0%] men; 106 patients [90.6%] with primary prevention indications) were included. Having a TTNtv was associated with a higher risk of receiving appropriate ICD therapy (shock or antitachycardia pacing) for ventricular tachycardia or fibrillation (hazard ratio [HR], 4.9; 95% CI, 2.2-10.7; P < .001). This association was independent of all covariates, including midwall fibrosis measured by late gadolinium enhanc

Journal article

Mazzarotto F, Tayal P, Buchan R, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, De Marvao A, Felkin L, Dawes T, Ahmad M, Edwards E, Ing A, Thomson K, Chan L, Sim D, Baksi J, Pantazis A, Roberts A, Watkins H, Funke B, O'Regan D, Olivotto I, Barton P, Prasad S, Cook S, Ware J, Walsh Ret al., 2019, RE-EVALUATING THE GENETIC CONTRIBUTION OF MONOGENIC DILATED CARDIOMYOPATHY, Annual Conference of the British-Cardiovascular-Society (BCS) - Digital Health Revolution, Publisher: BMJ PUBLISHING GROUP, Pages: A100-A100, ISSN: 1355-6037

Conference paper

Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, Dougherty K, Harrison SM, McGlaughon J, Milko LV, Morales A, Seifert BA, Strande N, Thomson K, van Tintelen JP, Wallace K, Walsh R, Wells Q, Whiffin N, Witkowski L, Semsarian C, Ware JS, Hershberger RE, Funke Bet al., 2019, Evaluating the clinical validity of hypertrophic cardiomyopathy genes, Circulation, Vol: 139, Pages: 1745-1745, ISSN: 0009-7322

Background:Genetic testing for families with hypertrophic cardiomyopathy (HCM) provides a significant opportunity to improve care. Recent trends to increase gene panel sizes often mean variants in genes with questionable association are reported to patients. Classification of HCM genes and variants is critical, as misclassification can lead to genetic misdiagnosis. We show the validity of previously reported HCM genes using an established method for evaluating gene-disease associations.Methods:A systematic approach was used to assess the validity of reported gene-disease associations, including associations with isolated HCM and syndromes including left ventricular hypertrophy. Genes were categorized as having definitive, strong, moderate, limited, or no evidence of disease causation. We also reviewed current variant classifications for HCM in ClinVar, a publicly available variant resource.Results:Fifty-seven genes were selected for curation based on their frequent inclusion in HCM testing and prior association reports. Of 33 HCM genes, only 8 (24%) were categorized as definitive (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, and MYL3); 3 had moderate evidence (CSRP3, TNNC1, and JPH2; 33%); and 22 (66%) had limited (n=16) or no evidence (n=6). There were 12 of 24 syndromic genes definitively associated with isolated left ventricular hypertrophy. Of 4191 HCM variants in ClinVar, 31% were in genes with limited or no evidence of disease association.Conclusions:The majority of genes previously reported as causative of HCM and commonly included in diagnostic tests have limited or no evidence of disease association. Systematically curated HCM genes are essential to guide appropriate reporting of variants and ensure the best possible outcomes for HCM families.

Journal article

Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, Dougherty K, Harrison SM, McGlaughon J, Milko LV, Morales A, Seifert BA, Strande N, Thomson K, Peter van Tintelen J, Wallace K, Walsh R, Wells Q, Whiffin N, Witkowski L, Semsarian C, Ware JS, Hershberger RE, Funke Bet al., 2019, Evaluating the clinical validity of hypertrophic cardiomyopathy genes, Circulation: Cardiovascular Genetics, Vol: 12, ISSN: 1942-325X

Background:Genetic testing for families with hypertrophic cardiomyopathy (HCM) provides a significant opportunity to improve care. Recent trends to increase gene panel sizes often mean variants in genes with questionable association are reported to patients. Classification of HCM genes and variants is critical, as misclassification can lead to genetic misdiagnosis. We show the validity of previously reported HCM genes using an established method for evaluating gene-disease associations.Methods:A systematic approach was used to assess the validity of reported gene-disease associations, including associations with isolated HCM and syndromes including left ventricular hypertrophy. Genes were categorized as having definitive, strong, moderate, limited, or no evidence of disease causation. We also reviewed current variant classifications for HCM in ClinVar, a publicly available variant resource.Results:Fifty-seven genes were selected for curation based on their frequent inclusion in HCM testing and prior association reports. Of 33 HCM genes, only 8 (24%) were categorized as definitive (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, and MYL3); 3 had moderate evidence (CSRP3, TNNC1, and JPH2; 33%); and 22 (66%) had limited (n=16) or no evidence (n=6). There were 12 of 24 syndromic genes definitively associated with isolated left ventricular hypertrophy. Of 4191 HCM variants in ClinVar, 31% were in genes with limited or no evidence of disease association.Conclusions:The majority of genes previously reported as causative of HCM and commonly included in diagnostic tests have limited or no evidence of disease association. Systematically curated HCM genes are essential to guide appropriate reporting of variants and ensure the best possible outcomes for HCM families.

Journal article

Walsh R, Mazzarotto F, Whiffin N, Buchan R, Midwinter W, Wilk A, Li N, Felkin L, Ingold N, Govind R, Ahmad M, Mazaika E, Allouba M, Zhang X, de Marvao A, Day SM, Ashley E, Colan SD, Michels M, Pereira AC, Jacoby D, Ho CY, Thomson KL, Watkins H, Barton PJR, Olivotto I, Cook SA, Ware JSet al., 2019, Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: The case of hypertrophic cardiomyopathy, Genome Medicine, Vol: 11, ISSN: 1756-994X

BackgroundInternational guidelines for variant interpretation in Mendelian disease set stringent criteria to report a variant as (likely) pathogenic, prioritising control of false-positive rate over test sensitivity and diagnostic yield. Genetic testing is also more likely informative in individuals with well-characterised variants from extensively studied European-ancestry populations. Inherited cardiomyopathies are relatively common Mendelian diseases that allow empirical calibration and assessment of this framework.MethodsWe compared rare variants in large hypertrophic cardiomyopathy (HCM) cohorts (up to 6179 cases) to reference populations to identify variant classes with high prior likelihoods of pathogenicity, as defined by etiological fraction (EF). We analysed the distribution of variants using a bespoke unsupervised clustering algorithm to identify gene regions in which variants are significantly clustered in cases.ResultsAnalysis of variant distribution identified regions in which variants are significantly enriched in cases and variant location was a better discriminator of pathogenicity than generic computational functional prediction algorithms. Non-truncating variant classes with an EF ≥ 0.95 were identified in five established HCM genes. Applying this approach leads to an estimated 14–20% increase in cases with actionable HCM variants, i.e. variants classified as pathogenic/likely pathogenic that might be used for predictive testing in probands’ relatives.ConclusionsWhen found in a patient confirmed to have disease, novel variants in some genes and regions are empirically shown to have a sufficiently high probability of pathogenicity to support a “likely pathogenic” classification, even without additional segregation or functional data. This could increase the yield of high confidence actionable variants, consistent with the framework and recommendations of current guidelines. The techniques outlined offer a consisten

Journal article

Halliday BP, Wassall R, Lota A, Khalique Z, Gregson J, Newsome S, Jackson R, Rahneva T, Wage R, Smith G, Venneri L, Tayal U, Auger D, Midwinter W, Whiffin N, Rajani R, Dungu J, Cook S, Ware J, Baksi J, Pennell D, Rosen S, Cowie M, Cleland J, Prasad Set al., 2019, Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial, The Lancet, Vol: 393, Pages: 61-73, ISSN: 0140-6736

BackgroundPatients with dilated cardiomyopathy whose symptoms and cardiac function have recovered often ask whether their medications can be stopped. The safety of withdrawing treatment in this situation is unknown.MethodsWe did an open-label, pilot, randomised trial to examine the effect of phased withdrawal of heart failure medications in patients with previous dilated cardiomyopathy who were now asymptomatic, whose left ventricular ejection fraction (LVEF) had improved from less than 40% to 50% or greater, whose left ventricular end-diastolic volume (LVEDV) had normalised, and who had an N-terminal pro-B-type natriuretic peptide (NT-pro-BNP) concentration less than 250 ng/L. Patients were recruited from a network of hospitals in the UK, assessed at one centre (Royal Brompton and Harefield NHS Foundation Trust, London, UK), and randomly assigned (1:1) to phased withdrawal or continuation of treatment. After 6 months, patients in the continued treatment group had treatment withdrawn by the same method. The primary endpoint was a relapse of dilated cardiomyopathy within 6 months, defined by a reduction in LVEF of more than 10% and to less than 50%, an increase in LVEDV by more than 10% and to higher than the normal range, a two-fold rise in NT-pro-BNP concentration and to more than 400 ng/L, or clinical evidence of heart failure, at which point treatments were re-established. The primary analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02859311.FindingsBetween April 21, 2016, and Aug 22, 2017, 51 patients were enrolled. 25 were randomly assigned to the treatment withdrawal group and 26 to continue treatment. Over the first 6 months, 11 (44%) patients randomly assigned to treatment withdrawal met the primary endpoint of relapse compared with none of those assigned to continue treatment (Kaplan-Meier estimate of event rate 45·7% [95% CI 28·5–67·2]; p=0·0001). After 6 months, 25 (96%) of 2

Journal article

Whiffin N, Roberts AM, Minikel E, Zappala Z, Walsh R, O'Donnell-Luria AH, Karczewski KJ, Harrison SM, Thomson KL, Sage H, Ing AY, Barton PJR, Funke B, Cook SA, MacArthur DG, Ware JSet al., 2019, Using high-resolution variant frequencies empowers clinical genome interpretation and enables investigation of genetic architecture, American Journal of Human Genetics, Vol: 104, Pages: 187-190, ISSN: 0002-9297

Journal article

Halliday BP, Wassail R, Lota AS, Khalique Z, Gregson J, Newsome S, Jackson R, Tayal T, Wage R, Smith G, Venneri L, Tayal U, Auger D, Midwinter W, Whiffin N, Rajani R, Dungu JN, Pantazis A, Cook SA, Ware JS, Baksi AJ, Pennell DJ, Rosen SD, Cowie MR, Cleland JGF, Prasad SKet al., 2019, Brief Comment Video to the Recommended Article of the Month, REVISTA PORTUGUESA DE CARDIOLOGIA, Vol: 38, Pages: 71-71, ISSN: 0870-2551

Journal article

Whiffin N, Minikel E, Walsh R, O'Donnell-Luria A, Karczewski K, Ing AY, Barton PJR, Funke B, Cook SA, MacArthur DG, Ware JSet al., 2018, High-resolution variant filtering empowers clinical interpretation and provides insights into variant penetrance and population-specificity, 50th European-Society-of-Human-Genetics (ESHG) Conference, Publisher: NATURE PUBLISHING GROUP, Pages: 97-97, ISSN: 1018-4813

Conference paper

Walsh R, Mazzarotto F, Whiffin N, Buchan R, Midwinter W, Wilk A, Li N, Felkin L, Ingold N, Govind R, Ahmad M, Mazaika E, Allouba M, Zhang X, Marvao AD, Day SM, Ashley E, Colan SD, Michels M, Pereira AC, Jacoby D, Ho CY, Thomson KL, Watkins H, Barton PJR, Olivotto I, Cook SA, Ware JSet al., 2018, Quantitative approaches to variant classification increase the yield and precision of genetic testing in Mendelian diseases: The case of hypertrophic cardiomyopathy

<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>International guidelines for variant interpretation in Mendelian disease set stringent criteria to report a variant as (likely) pathogenic, prioritising control of false positive rate over test sensitivity and diagnostic yield. Genetic testing is also more likely informative in individuals with well-characterised variants from extensively studied European-ancestry populations. Inherited cardiomyopathies are relatively common Mendelian diseases that allow empirical calibration and assessment of this framework.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We compared rare variants in large hypertrophic cardiomyopathy (HCM) cohorts to reference populations to identify variant classes with high prior likelihoods of pathogenicity, as defined by etiological fraction (EF). Analysis of variant distribution identified regions in which variants are significantly enriched in cases and variant location was a better discriminator of pathogenicity than generic computational functional prediction algorithms. Non-truncating variant classes with an EF≥0.95, and therefore clinically actionable, were identified in 5 established HCM genes. Applying this approach leads to an estimated 14-20% increase in cases with actionable HCM variants.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>When found in a patient confirmed to have disease, novel variants in some genes and regions are empirically shown to have a sufficiently high probability of pathogenicity to support a “likely pathogenic” classification, even without additional segregation or functional data. This could increase the yield of high confidence actionable variants, consistent with the framework and recommendations of current guidelines. The techniques outlined offer a consi

Journal article

Oates EC, Jones KJ, Donkervoort S, Charlton A, Brammah S, Smith JE, Ware JS, Yau KS, Swanson LC, Whiffin N, Peduto AJ, Bournazozs A, Waddell LB, Farrar MA, Sampaio HA, Teoh HL, Lamont PJ, Mowat D, Fitzsimons RB, Corbett AJ, Ryan MM, O'Grady GL, Sandaradura SA, Ghaoui R, Joshi HB, Marshall JL, Nolan MA, Kaur S, Punetha J, Topf A, Harris E, Bakshi M, Genetti CA, Marttila M, Werlauff U, Streichenberger N, Pestronk A, Mazanti I, Pinner JR, Vuillerot C, Grosmann C, Camacho A, Mohassel P, Leach ME, Foley AR, Bharucha-Goebel D, Collins J, Connolly AM, Gilbreath HR, Iannaccone ST, Castro D, Cummings BB, Webster RI, Lazaro L, Vissing J, Coppens S, Deconinck N, Luk H, Thomas NH, Foulds NC, Illingworth MA, McLean CA, Phadke R, Ravenscroft G, Witting N, Hackman P, Richard I, Cooper ST, Kamsteeg EJ, Hoffman EP, Bushby K, Straub V, Udd B, Ferreiro A, North KN, Clarke NF, Lek M, Beggs AH, Bonnermann CG, MacArthur DG, Granzier H, Davis MR, Laing NGet al., 2018, Congenital titinopathy: comprehensive characterisation and pathogenic insights, Annals of Neurology, Vol: 83, Pages: 1105-1124, ISSN: 0364-5134

Objective: Comprehensive clinical characterisation of congenital titinopathy to facilitate diagnosis and management of this important emerging disorder.Methods: Using massively parallel sequencing we identified 30 patients from 27 families with two pathogenic nonsense, frameshift and/or splice site TTN mutations in trans. We then undertook a detailed analysis of the clinical, histopathology and imaging features of these patients.Results: All patients had prenatal‐ or early‐onset hypotonia and/or congenital contractures. None had ophthalmoplegia. Scoliosis and respiratory insufficiency typically developed early and progressed rapidly, whereas limb weakness was often slowly progressive, and usually did not prevent independent walking. Cardiac involvement was present in 46% of patients. Relatives of two patients had dilated cardiomyopathy. Creatine kinase levels were normal to moderately elevated. Increased fibre size variation, internalised nuclei and cores were common histopathological abnormalities. Cap‐like structures, whorled or ring fibres, and mitochondrial accumulations were also observed. Muscle MRI showed gluteal, hamstring and calf muscle involvement. Western blot analysis showed a near‐normal sized titin protein in all samples.The presence of two mutations predicted to impact both N2BA and N2B cardiac isoforms appeared to be associated with greatest risk of cardiac involvement. One third of patients had one mutation predicted to impact exons present in fetal skeletal muscle, but not included within the mature skeletal muscle isoform transcript. This strongly suggests developmental isoforms are involved in the pathogenesis of this congenital/early‐onset disorder.Interpretation: This detailed clinical reference dataset will greatly facilitate diagnostic confirmation and management of patients and has provided important insights into disease pathogenesis.

Journal article

Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I, Salazar-Mendiguchia J, Garcia-Pinilla JM, Pascual-Figal DA, Nunez J, Guzzo-Merello G, Gonzalez-Vioque E, Bardaji A, Manito N, Lopez-Garrido MA, Padron-Barthe L, Edwards E, Whiffin N, Walsh R, Buchan RJ, Midwinter W, Wilk A, Prasad S, Pantazis A, Baski J, O'Regan DP, Alsonso-Pulpon A, Cook SA, Lara-Pezzi E, Barton PJ, Garcia-Pavia Pet al., 2018, A genetic etiology for alcohol-induced cardiac toxicity, Journal of the American College of Cardiology, Vol: 71, Pages: 2293-2302, ISSN: 0735-1097

Background: Alcoholic cardiomyopathy (ACM) is defined by a dilated and impaired left ventricle due to chronic excess alcohol consumption. It is largely unknown what factors determine cardiac toxicity on exposure to alcohol.Objectives: We sought to evaluate the role of variation in cardiomyopathy-associated genes in the pathophysiology of ACM, and to examine the effects of alcohol intake and genotype on DCM severity.Methods: We characterized 141 ACM cases, 716 dilated cardiomyopathy (DCM) cases and 445 healthy volunteers. We compared the prevalence of rare, protein-altering variants in 9 genes associated with inherited DCM. We evaluated the effect of genotype and alcohol-consumption on phenotype in DCM.Results: Variants in well-characterized DCM-causing genes were more prevalent in patients with ACM than controls (13.5% vs 2.9%; P=1.2e-05), but similar between patients with ACM and DCM (19.4%; P=0.12) and with a predominant burden of Titin-truncating variants (TTNtv, 9.9%). Separately, we identified an interaction between TTN genotype and excess alcohol consumption in a cohort of DCM patients not meeting ACM criteria. On multivariate analysis, DCM patients with a TTNtv who consumed excess alcohol had an 8.7% absolute reduction in ejection fraction (95% CI -2.3 to -15.1, P<0.007) compared with those without TTNtv and excess alcohol consumption. The presence of TTNtv did not predict phenotype, outcome or functional recovery on treatment in ACM patients. Conclusions: TTNtv represent a prevalent genetic predisposition for ACM, and are also associated with a worse LVEF in DCM patients who consume alcohol above recommended levels. Familial evaluation and genetic testing should be considered in patients presenting with ACM.

Journal article

Whiffin N, walsh R, Govind R, Edwards M, Ahmad M, Zhang X, Tayal U, Buchan R, Midwinter W, Wilk A, Najgebauer H, Francis C, Wilkinson S, Monk T, Brett L, O'Regan D, Prasad S, Morris-Rosendahl D, Barton P, Edwards E, Ware J, Cook Set al., 2018, CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation, Genetics in Medicine, Vol: 20, Pages: 1246-1254, ISSN: 1098-3600

PurposeInternationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (http://www.cardioclassifier.org), a semiautomated decision-support tool for inherited cardiac conditions (ICCs).MethodsCardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.ResultsWe benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher’s P = 1.1  ×  10−18), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.ConclusionCardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.

Journal article

Ware JS, 2018, Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: Recommendations by ClinGen's Inherited Cardiomyopathy Expert Panel, Genetics in Medicine, Vol: 20, Pages: 351-359, ISSN: 1098-3600

PurposeIntegrating genomic sequencing in clinical care requires standardization of variant interpretation practices. The Clinical Genome Resource has established expert panels to adapt the American College of Medical Genetics and Genomics/Association for Molecular Pathology classification framework for specific genes and diseases. The Cardiomyopathy Expert Panel selected MYH7, a key contributor to inherited cardiomyopathies, as a pilot gene to develop a broadly applicable approach.MethodsExpert revisions were tested with 60 variants using a structured double review by pairs of clinical and diagnostic laboratory experts. Final consensus rules were established via iterative discussions.ResultsAdjustments represented disease-/gene-informed specifications (12) or strength adjustments of existing rules (5). Nine rules were deemed not applicable. Key specifications included quantitative frameworks for minor allele frequency thresholds, the use of segregation data, and a semiquantitative approach to counting multiple independent variant occurrences where fully controlled case-control studies are lacking. Initial inter-expert classification concordance was 93%. Internal data from participating diagnostic laboratories changed the classification of 20% of the variants (n = 12), highlighting the critical importance of data sharing.ConclusionThese adapted rules provide increased specificity for use in MYH7-associated disorders in combination with expert review and clinical judgment and serve as a stepping stone for genes and disorders with similar genetic and clinical characteristics.

Journal article

Corden B, Jarman J, Whiffin N, Tayal U, Buchan R, Sehmi J, Harper A, Midwinter W, Lascelles K, Markides V, Mason M, Pennell DJ, Barton PJ, Prasad SK, Wong T, Cook SA, Ware JSet al., 2017, Titin Truncating Variants Predict Life-threatening Arrhythmias in Patients With Dilated Cardiomyopathy, Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Ingles J, Goldstein J, Caleshu C, Corty E, Crowley S, Dougherty K, McGlaughon J, Milko L, Morales A, Seifert B, Semsarian C, Strande N, Thaxton C, Thomson K, van Tintelen P, Wallace K, Walsh R, Ware J, Wells Q, Whiffin N, Wikowski L, Hershberger R, Funke Bet al., 2017, Evaluating Hypertrophic Cardiomyopathy Disease-Gene Associations Using the Clinical Genome Resource (ClinGen) Gene Curation Framework, Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Corden B, Jarman J, Whiffin N, Tayal U, Buchan R, Sehmi J, Harper A, Midwinter W, Lascelles K, Markides V, Mason M, Pennell DJ, Barton PJ, Prasad SK, Wong T, Cook SA, Ware JSet al., 2017, Titin Truncating Variants Predict Life-threatening Arrhythmias in Patients With Dilated Cardiomyopathy, Scientific Sessions of the American-Heart-Association / Resuscitation Science Symposium, Publisher: American Heart Association, Pages: E96-E96, ISSN: 0009-7322

Introduction: There is an urgent need for better arrhythmic risk stratification in non-ischaemic dilated cardiomyopathy (DCM), where the benefit of ICD implantation is unclear. Titin truncating variants (TTNtv) are the commonest genetic cause of DCM and are associated with early onset non-sustained ventricular tachycardia (NSVT) and atrial fibrillation (AF) in these patients.Hypothesis: We hypothesize that TTNtv status can predict potentially life threatening ventricular tachycardia (VT) or fibrillation (VF) and development of new persistent AF in DCM patients with CRT-D or ICD devices.Methods: We studied 117 DCM patients with an ICD or CRT-D and documented device-recorded arrhythmia over a median period of 4.2 years. Patients were stratified by TTN genotype (28 positive for a TTNtv, 89 negative). The primary outcome was time to first device-treated VT >200bpm or VF. Secondary outcome measures included time to first development of persistent AF.Results: TTNtv predicted the risk of receiving an appropriate ICD therapy for VT/VF (hazard ratio [HR] = 4.9, 95% confidence interval [CI]=2.3-10.7, P<0.0001). This association was independent of all covariates, including replacement fibrosis measured by late-gadolinium enhancement (LGE), (adjusted HR = 8.2, 95% CI 1.9-36.5, P=0.005). Individuals with both a TTNtv and fibrosis had a markedly greater risk for appropriate device therapy than those with neither (HR = 16.6, CI 3.5-79.3, P<0.0001). TTNtv were also a risk factor for developing new persistent AF (HR = 4.4, 95% CI = 1.45-13.1, P=0.006).Conclusion: TTNtv status is an important risk factor for clinically significant arrhythmia in patients with DCM and CRT-D or ICD devices. TTNtv status alone, or more powerfully in combination with fibrosis imaging by MRI, may provide an effective approach for risk stratifying the need for ICD therapy in DCM patients.

Conference paper

Tayal U, Newsome S, Buchan R, Whiffin N, Halliday B, Lota A, Roberts A, Baksi AJ, Voges I, Midwinter W, Wilk A, Govind R, Walsh R, Daubeney P, Jarman JWE, Baruah R, Frenneaux M, Barton PJ, Pennell D, Ware JS, Prasad SK, Cook SAet al., 2017, Phenotype and Clinical Outcomes of Titin Cardiomyopathy, Journal of the American College of Cardiology, Vol: 70, Pages: 2264-2274, ISSN: 0735-1097

Background Improved understanding of dilated cardiomyopathy (DCM) due to titin truncation (TTNtv) may help guide patient stratification.Objectives The purpose of this study was to establish relationships among TTNtv genotype, cardiac phenotype, and outcomes in DCM.Methods In this prospective, observational cohort study, DCM patients underwent clinical evaluation, late gadolinium enhancement cardiovascular magnetic resonance, TTN sequencing, and adjudicated follow-up blinded to genotype for the primary composite endpoint of cardiovascular death, and major arrhythmic and major heart failure events.Results Of 716 subjects recruited (mean age 53.5 ± 14.3 years; 469 men [65.5%]; 577 [80.6%] New York Heart Association function class I/II), 83 (11.6%) had TTNtv. Patients with TTNtv were younger at enrollment (49.0 years vs. 54.1 years; p = 0.002) and had lower indexed left ventricular mass (5.1 g/m2 reduction; padjusted = 0.03) compared with patients without TTNtv. There was no difference in biventricular ejection fraction between TTNtv+/− groups. Overall, 78 of 604 patients (12.9%) met the primary endpoint (median follow-up 3.9 years; interquartile range: 2.0 to 5.8 years), including 9 of 71 patients with TTNtv (12.7%) and 69 of 533 (12.9%) without. There was no difference in the composite primary outcome of cardiovascular death, heart failure, or arrhythmic events, for patients with or without TTNtv (hazard ratio adjusted for primary endpoint: 0.92 [95% confidence interval: 0.45 to 1.87]; p = 0.82).Conclusions In this large, prospective, genotype-phenotype study of ambulatory DCM patients, we show that prognostic factors for all-cause DCM also predict outcome in TTNtv DCM, and that TTNtv DCM does not appear to be associated with worse medium-term prognosis.

Journal article

Biffi C, Simoes Monteiro de Marvao A, Attard M, Dawes T, Whiffin N, Bai W, Shi W, Francis C, Meyer H, Buchan R, Cook S, Rueckert D, O'Regan DPet al., 2017, Three-dimensional Cardiovascular Imaging-Genetics: A Mass Univariate Framework, Bioinformatics, ISSN: 1367-4803

Motivation: Left ventricular (LV) hypertrophy is a strong predictor of cardiovascular outcomes, but its genetic regulation remains largely unexplained. Conventional phenotyping relies on manual calculation of LV mass and wall thickness, but advanced cardiac image analysis presents an opportunity for highthroughput mapping of genotype-phenotype associations in three dimensions (3D).Results: High-resolution cardiac magnetic resonance images were automatically segmented in 1,124 healthy volunteers to create a 3D shape model of the heart. Mass univariate regression was used to plot a 3D effect-size map for the association between wall thickness and a set of predictors at each vertex in the mesh. The vertices where a significant effect exists were determined by applying threshold-free cluster enhancement to boost areas of signal with spatial contiguity. Experiments on simulated phenotypic signals and SNP replication show that this approach offers a substantial gain in statistical power for cardiac genotype-phenotype associations while providing good control of the false discovery rate. This framework models the effects of genetic variation throughout the heart and can be automatically applied to large population cohorts.Availability: The proposed approach has been coded in an R package freely available at https://doi.org/10.5281/zenodo.834610 together with the clinical data used in this work.

Journal article

Whiffin N, Walsh R, Govind R, Edwards M, Ahmad M, Zhang X, Tayal U, Buchan R, Midwinter W, Wilk AE, Najgebauer H, Francis C, Wilkinson S, Monk T, Brett L, O'Regan DP, Prasad SK, Morris-Rosendahl DJ, Barton PJR, Edwards E, Ware JS, Cook SAet al., 2017, CardioClassifier – demonstrating the power of disease- and gene-specific computational decision support for clinical genome interpretation, Publisher: Cold Spring Harbor Laboratory

<jats:title>ABSTRACT</jats:title><jats:sec><jats:title>Purpose</jats:title><jats:p>Internationally-adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (<jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.cardioclassifier.org">www.cardioclassifier.org</jats:ext-link>), a semi-automated decision-support tool for inherited cardiac conditions (ICCs).</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>CardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support varian interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>We benchmarked CardioClassifier on 57 expertly-curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically-actionable variants (64/219 vs 156/219, Fisher’s <jats:bold>P</jats:bold>=1.1x10-18), with important false positives; illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually-curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.</jats:p></jats:sec><jats:sec><jat

Working paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00837580&limit=30&person=true