Imperial College London

Professor Neil Ferguson

Faculty of MedicineSchool of Public Health

Director of the School of Public Health
 
 
 
//

Contact

 

+44 (0)20 7594 3296neil.ferguson Website

 
 
//

Location

 

508School of Public HealthWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

433 results found

Cori A, Donnelly CA, dorigatti, ferguson NM, fraser, garske, jombart, Nedjati-Gilani G, Nouvellet, Riley, Van Kerkhove, Mills, Blake IMet al., 2017, Key data for outbreak evaluation: building on the Ebola experience, Philosophical Transactions of the Royal Society B: Biological Sciences, Vol: 372, ISSN: 1471-2970

Following the detection of an infectious disease outbreak, rapid epidemiological assessmentis critical to guidean effectivepublic health response. To understand the transmission dynamics and potential impact of an outbreak, several types of data are necessary. Here we build on experience gained inthe West AfricanEbolaepidemic and prior emerging infectious disease outbreaksto set out a checklist of data needed to: 1) quantify severity and transmissibility;2) characterise heterogeneities in transmission and their determinants;and 3) assess the effectiveness of different interventions.We differentiate data needs into individual-leveldata (e.g. a detailed list of reported cases), exposure data(e.g.identifying where / howcases may have been infected) and populationlevel data (e.g.size/demographicsof the population(s)affected andwhen/where interventions were implemented). A remarkable amount of individual-level and exposuredata was collected during the West African Ebola epidemic, which allowed the assessment of (1) and (2). However,gaps in population-level data (particularly around which interventions were applied whenand where)posed challenges to the assessment of (3).Herewehighlight recurrent data issues, give practical suggestions for addressingthese issues and discuss priorities for improvements in data collection in future outbreaks.

Journal article

Garske T, Cori A, Ariyarajah A, Blake I, Dorigatti I, Eckmanns T, Fraser C, Hinsley W, Jombart T, Mills H, Nedjati-Gilani G, Newton E, Nouvellet P, Perkins D, Riley S, Schumacher D, Shah A, Van Kerkhove M, Dye C, Ferguson N, Donnelly Cet al., 2017, Heterogeneities in the case fatality ratio in the West African Ebola outbreak 2013 – 2016, Philosophical Transactions of the Royal Society B: Biological Sciences, Vol: 372, ISSN: 1471-2970

The 2013–2016 Ebola outbreak in West Africa is the largest on record with 28 616 confirmed, probable and suspected cases and 11 310 deaths officially recorded by 10 June 2016, the true burden probably considerably higher. The case fatality ratio (CFR: proportion of cases that are fatal) is a key indicator of disease severity useful for gauging the appropriate public health response and for evaluating treatment benefits, if estimated accurately. We analysed individual-level clinical outcome data from Guinea, Liberia and Sierra Leone officially reported to the World Health Organization. The overall mean CFR was 62.9% (95% CI: 61.9% to 64.0%) among confirmed cases with recorded clinical outcomes. Age was the most important modifier of survival probabilities, but country, stage of the epidemic and whether patients were hospitalized also played roles. We developed a statistical analysis to detect outliers in CFR between districts of residence and treatment centres (TCs), adjusting for known factors influencing survival and identified eight districts and three TCs with a CFR significantly different from the average. From the current dataset, we cannot determine whether the observed variation in CFR seen by district or treatment centre reflects real differences in survival, related to the quality of care or other factors or was caused by differences in reporting practices or case ascertainment.

Journal article

Nouvellet P, Cori A, Garske T, Blake IM, Dorigatti I, Hinsley W, Jombart T, Mills HL, Nedjati-Gilani G, Van Kerkhove MD, Fraser C, Donnelly CA, Ferguson NM, Riley Set al., 2017, A simple approach to measure transmissibility and forecast incidence, Epidemics, Vol: 22, Pages: 29-35, ISSN: 1755-4365

Outbreaks of novel pathogens such as SARS, pandemic influenza and Ebola require substantial investments in reactive interventions, with consequent implementation plans sometimes revised on a weekly basis. Therefore, short-term forecasts of incidence are often of high priority. In light of the recent Ebola epidemic in West Africa, a forecasting exercise was convened by a network of infectious disease modellers. The challenge was to forecast unseen “future” simulated data for four different scenarios at five different time points. In a similar method to that used during the recent Ebola epidemic, we estimated current levels of transmissibility, over variable time-windows chosen in an ad hoc way. Current estimated transmissibility was then used to forecast near-future incidence. We performed well within the challenge and often produced accurate forecasts. A retrospective analysis showed that our subjective method for deciding on the window of time with which to estimate transmissibility often resulted in the optimal choice. However, when near-future trends deviated substantially from exponential patterns, the accuracy of our forecasts was reduced. This exercise highlights the urgent need for infectious disease modellers to develop more robust descriptions of processes – other than the widespread depletion of susceptible individuals – that produce non-exponential patterns of incidence.

Journal article

McCormack C, Ghani AC, Ferguson NM, 2017, THE EFFECTS OF METAPOPULATION STRUCTURE ON FINE-SCALE MOSQUITO POPULATION DYNAMICS AND POTENTIAL CONSEQUENCES FOR THE TRANSMISSION DYNAMICS OF DENGUE AND MALARIA, 66th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 191-191, ISSN: 0002-9637

Conference paper

Hamlet A, Jean K, Ferguson N, Van Kerkhove M, Yactayo S, Perea W, Biey J, Sall A, Garske Tet al., 2017, POLICI: AN ONLINE TOOL FOR VISUALIZATION OF POPULATION-LEVEL YELLOW FEVER IMMUNIZATION COVERAGE IN AFRICA, 66th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 257-257, ISSN: 0002-9637

Conference paper

Imai N, Rodriguez-Barraquer I, Hinsley W, Cummings DA, Ferguson NMet al., 2017, MAPPING THE GLOBAL ESTIMATES OF DENGUE SEROPREVALENCE AND TRANSMISSION INTENSITY, 66th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 193-193, ISSN: 0002-9637

Conference paper

Cattarino L, Rodriguez-Barraquer I, Cummings D, Imai N, Ferguson Net al., 2017, MAPPING GLOBAL VARIATION IN DENGUE TRANSMISSION INTENSITY AND ASSESSING THE IMPACT OF CONTROL STRATEGIES, 66th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 193-193, ISSN: 0002-9637

Conference paper

Flasche S, Jit M, Rodríguez-Barraquer I, Coudeville L, Recker M, Koelle K, Milne G, Hladish TJ, Perkins TA, Cummings DA, Dorigatti I, Laydon DJ, España G, Kelso J, Longini I, Lourenco J, Pearson CA, Reiner RC, Mier-Y-Terán-Romero L, Vannice K, Ferguson Net al., 2016, The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study, Plos Medicine, Vol: 13, ISSN: 1549-1676

BACKGROUND: Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. METHODS AND FINDINGS: The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34%) and in high-transmission settings (SP9 ≥ 70%) by 13%-25% (all simulations: 10%- 34%). These endemicity levels are represen

Journal article

International Ebola Response Team, Agua-Agum J, Ariyarajah A, Aylward B, Bawo L, Bilivogui P, Blake IM, Brennan RJ, Cawthorne A, Cleary E, Clement P, Conteh R, Cori A, Dafae F, Dahl B, Dangou JM, Diallo B, Donnelly CA, Dorigatti I, Dye C, Eckmanns T, Fallah M, Ferguson NM, Fiebig L, Fraser C, Garske T, Gonzalez L, Hamblion E, Hamid N, Hersey S, Hinsley W, Jambei A, Jombart T, Kargbo D, Keita S, Kinzer M, George FK, Godefroy B, Gutierrez G, Kannangarage N, Mills HL, Moller T, Meijers S, Mohamed Y, Morgan O, Nedjati-Gilani G, Newton E, Nouvellet P, Nyenswah T, Perea W, Perkins D, Riley S, Rodier G, Rondy M, Sagrado M, Savulescu C, Schafer IJ, Schumacher D, Seyler T, Shah A, Van Kerkhove MD, Wesseh CS, Yoti Zet al., 2016, Exposure patterns driving Ebola transmissions in West Africa: a retrospective observational study, PLOS Medicine, Vol: 13, ISSN: 1549-1277

BACKGROUND: The ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved.METHODS AND FINDINGS: Over 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola ("cases") were asked if they had exposure to other potential Ebola cases ("potential source contacts") in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO's response during the epidemic, and have been updated for publication. We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p < 0.001) between this proportion in a given district for a given month and the within-district transmission intensity, quantified by the estimated reproduction number (R). We also found a negative correlation (r = -0.37, p < 0.001) between R and the district proportion of hospitalised cases admitted within ≤4 days of symptom onset. These two proportions were not correlated, suggesting that reduced funeral attendance and faster hospitalisation independently influenced local transmission intensity. We were able to identify 14% of potential source contacts as cases in the

Journal article

Jean K, Donnelly C, Ferguson N, Garske Tet al., 2016, A meta-analysis of serological response associated with yellow fever vaccination, American Journal of Tropical Medicine and Hygiene, Vol: 95, Pages: 1435-1439, ISSN: 1476-1645

Despite previous evidence of high level of efficacy, no synthetic metric of yellow fever (YF) vaccine efficacy is currently available. Based on the studies identified in a recent systematic review, we conducted a random-effects meta-analysis of the serological response associated with YF vaccination. Eleven studies conducted between 1965 and 2011 representing 4,868 individual observations were included in the meta-analysis. The pooled estimate of serological response was 97.5% (95% confidence interval [CI] = 82.9–99.7%). There was evidence of between-study heterogeneity (I2 = 89.1%), but this heterogeneity did not appear to be related to study size, study design, seroconversion measurement, or definition. Pooled estimates were significantly higher (P & 0.0001) among studies conducted in nonendemic settings (98.9%, 95% CI = 98.2–99.4%) than among those conducted in endemic settings (94.2%, 95% CI = 83.8–98.1%). These results provide background information against which to evaluate the efficacy of fractional doses of YF vaccine that may be used in outbreak situations.

Journal article

Ferguson NM, Rodriguez-Barraquer I, Dorigatti I, Mier-y-Teran-Romero L, Laydon DJ, Cummings DATet al., 2016, Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment, Science, Vol: 353, Pages: 1033-1036, ISSN: 0036-8075

The first approved dengue vaccine has now been licensed in six countries. We propose that this live attenuated vaccine acts like a silent natural infection in priming or boosting host immunity. A transmission dynamic model incorporating this hypothesis fits recent clinical trial data well and predicts that vaccine effectiveness depends strongly on the age group vaccinated and local transmission intensity. Vaccination in low-transmission settings may increase the incidence of more severe “secondary-like” infection and, thus, the numbers hospitalized for dengue. In moderate transmission settings, we predict positive impacts overall but increased risks of hospitalization with dengue disease for individuals who are vaccinated when seronegative. However, in high-transmission settings, vaccination benefits both the whole population and seronegative recipients. Our analysis can help inform policy-makers evaluating this and other candidate dengue vaccines.

Journal article

Agua-Agum J, Allegranzi B, Ariyarajah A, Aylward RB, Blake IM, Barboza P, Bausch D, Brennan RJ, Clement P, Coffey P, Cori A, Donnelly CA, Dorigatti I, Drury P, Durski K, Dye C, Eckmanns T, Ferguson NM, Fraser C, Garcia E, Garske T, Gasasira A, Gurry C, Gutierrez GJ, Hamblion E, Hinsley W, Holden R, Holmes D, Hugonnet S, Jombart T, Kelley E, Santhana R, Mahmoud N, Mills HL, Mohamed Y, Musa E, Naidoo D, Nedjati-Gilani G, Newton E, Norton I, Nouvellet P, Perkins D, Perkins M, Riley S, Schumacher D, Shah A, Minh T, Varsaneux O, Van Kerkhove MDet al., 2016, After Ebola in West Africa - Unpredictable Risks, Preventable Epidemics, New England Journal of Medicine, Vol: 375, Pages: 587-596, ISSN: 1533-4406

Between December 2013 and April 2016, the largest epidemic of Ebola virus disease (EVD) to date generated more than 28,000 cases and more than 11,000 deaths in the large, mobile populations of Guinea, Liberia, and Sierra Leone. Tracking the rapid rise and slower decline of the West African epidemic has reinforced some common understandings about the epidemiology and control of EVD but has also generated new insights. Despite having more information about the geographic distribution of the disease, the risk of human infection from animals and from survivors of EVD remains unpredictable over a wide area of equatorial Africa. Until human exposure to infection can be anticipated or avoided, future outbreaks will have to be managed with the classic approach to EVD control — extensive surveillance, rapid detection and diagnosis, comprehensive tracing of contacts, prompt patient isolation, supportive clinical care, rigorous efforts to prevent and control infection, safe and dignified burial, and engagement of the community. Empirical and modeling studies conducted during the West African epidemic have shown that large epidemics of EVD are preventable — a rapid response can interrupt transmission and restrict the size of outbreaks, even in densely populated cities. The critical question now is how to ensure that populations and their health services are ready for the next outbreak, wherever it may occur. Health security across Africa and beyond depends on committing resources to both strengthen national health systems and sustain investment in the next generation of vaccines, drugs, and diagnostics.

Journal article

Cauchemez S, Nouvellet P, Cori A, Jombart T, Garske T, Clapham H, Moore S, Mills HL, Salje H, Collins C, Rodriquez-Barraquer I, Riley S, Truelove S, Algarni H, Alhakeem R, AlHarbi K, Turkistani A, Aguas RJ, Cummings DA, Van Kerkhove MD, Donnelly CA, Lessler J, Fraser C, Al-Barrak A, Ferguson NMet al., 2016, Unraveling the drivers of MERS-CoV transmission., Proceedings of the National Academy of Sciences of the United States of America, Vol: 113, Pages: 9081-9086, ISSN: 1091-6490

With more than 1,700 laboratory-confirmed infections, Middle East respiratory syndrome coronavirus (MERS-CoV) remains a significant threat for public health. However, the lack of detailed data on modes of transmission from the animal reservoir and between humans means that the drivers of MERS-CoV epidemics remain poorly characterized. Here, we develop a statistical framework to provide a comprehensive analysis of the transmission patterns underlying the 681 MERS-CoV cases detected in the Kingdom of Saudi Arabia (KSA) between January 2013 and July 2014. We assess how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics in KSA. We estimate that 12% [95% credible interval (CI): 9%, 15%] of cases were infected from the reservoir, the rest via human-to-human transmission in clusters (60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%; CI: 2%, 8%) regions. The reproduction number at the start of a cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53; CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by approximately one-half (47% CI: 34%, 63%) its original value after 10 cases on average. The ongoing exposure of humans to MERS-CoV from the reservoir is of major concern, given the continued risk of substantial outbreaks in health care systems. The approach we present allows the study of infectious disease transmission when data linking cases to each other remain limited and uncertain.

Journal article

Ferguson NM, Cucunubá ZM, Dorigatti I, Nedjati-Gilani GL, Donnelly CA, Basáñez MG, Nouvellet P, Lessler Jet al., 2016, Countering the Zika epidemic in Latin America, Science, Vol: 353, Pages: 353-354, ISSN: 1095-9203

Journal article

Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H, Carcelen AC, Ott CT, Sheffield JS, Ferguson NM, Cummings DA, Metcalf CJ, Rodriguez-Barraquer Iet al., 2016, Assessing the global threat from Zika virus, Science, ISSN: 0036-8075

First discovered in 1947, Zika virus (ZIKV) infection remained a little known tropical disease until 2015, when its apparent association with a significant increase in the incidence of microcephaly in Brazil raised alarms worldwide. There is limited information on the key factors that determine the extent of the global threat from ZIKV infection and resulting complications. Here, we review what is known about the epidemiology, natural history, and public health impact of ZIKV infection, the empirical basis for this knowledge, and the critical knowledge gaps that need to be filled.

Journal article

Imai N, Dorigatti I, Cauchemez S, Ferguson NMet al., 2016, Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries, PLOS Neglected Tropical Diseases, Vol: 10, ISSN: 1935-2735

BackgroundDespite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.Methodology/Principle FindingsWe estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.Conclusions/SignificanceAs expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available.

Journal article

Walker PG, Griffin JT, Ferguson NM, Ghani ACet al., 2016, Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study, Lancet Global Health, Vol: 4, Pages: e474-e484, ISSN: 2214-109X

BACKGROUND: Reducing the burden of malaria is a global priority, but financial constraints mean that available resources must be allocated rationally to maximise their effect. We aimed to develop a model to estimate the most efficient (ie, minimum cost) ordering of interventions to reduce malaria burden and transmission. We also aimed to estimate the efficiency of different spatial scales of implementation. METHODS: We combined a dynamic model capturing heterogeneity in malaria transmission across Africa with financial unit cost data for key malaria interventions. We combined estimates of patterns of malaria endemicity, seasonality in rainfall, and mosquito composition to map optimum packages of these interventions across Africa. Using non-linear optimisation methods, we examined how these optimum packages vary when control measures are deployed and assessed at national, subnational first administrative (provincial), or fine-scale (5 km(2) pixel) spatial scales. FINDINGS: The most efficient package in a given setting varies depending on whether disease reduction or elimination is the target. Long-lasting insecticide-treated nets are generally the most cost-effective first intervention to achieve either goal, with seasonal malaria chemoprevention or indoor residual spraying added second depending on seasonality and vector species. These interventions are estimated to reduce malaria transmission to less than one case per 1000 people per year in 43·4% (95% CI 40·0-49·0) of the population at risk in Africa. Adding three rounds of mass drug administration per year is estimated to increase this proportion to 90·9% (95% CI 86·9-94·6). Further optimisation can be achieved by targeting policies at the provincial level, achieving an estimated 32·1% (95% CI 29·6-34·5) cost saving relative to adopting country-wide policies. Nevertheless, we predict that only 26 (95% CI 22-29) of 41 countries could reduce transmissio

Journal article

Majeed F, Hansell A, Saxena S, Millett C, Ward H, Harris M, Hayhoe B, Car J, Easton G, Donnelly CA, Perneczky R, Jarvelin MR, Ezzati M, Rawaf S, Vineis P, Ferguson N, Riboli Eet al., 2016, How would a decision to leave the European Union affect medical research and health in the United Kingdom?, Journal of the Royal Society of Medicine, Vol: 109, Pages: 216-218, ISSN: 1758-1095

Journal article

Clapham HE, Quyen TH, Kien DT, Dorigatti I, Simmons CP, Ferguson NMet al., 2016, Modelling Virus and Antibody Dynamics during Dengue Virus Infection Suggests a Role for Antibody in Virus Clearance., PLOS Computational Biology, Vol: 12, ISSN: 1553-734X

Dengue is an infection of increasing global importance, yet uncertainty remains regarding critical aspects of its virology, immunology and epidemiology. One unanswered question is how infection is controlled and cleared during a dengue infection. Antibody is thought to play a role, but little past work has examined the kinetics of both virus and antibody during natural infections. We present data on multiple virus and antibody titres measurements recorded sequentially during infection from 53 Vietnamese dengue patients. We fit mechanistic mathematical models of the dynamics of viral replication and the host immune response to these data. These models fit the data well. The model with antibody removing virus fits the data best, but with a role suggested for ADCC or other infected cell clearance mechanisms. Our analysis therefore shows that the observed viral and antibody kinetics are consistent with antibody playing a key role in controlling viral replication. This work gives quantitative insight into the relationship between antibody levels and the efficiency of viral clearance. It will inform the future development of mechanistic models of how vaccines and antivirals might modify the course of natural dengue infection.

Journal article

Marshall JM, Touré M, Ouédraogo AL, Ndhlovu M, Kiware SS, Rezai A, Nkhama E, Griffin JT, Hollingsworth TD, Doumbia S, Govella NJ, Ferguson NM, Ghani ACet al., 2016, Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries, Malaria Journal, Vol: 15, ISSN: 1475-2875

Journal article

Metcalf CJ, Farrar J, Cutts FT, Basta NE, Graham AL, Lessler J, Ferguson NM, Burke DS, Grenfell BTet al., 2016, Use of serological surveys to generate key insights into the changing global landscape of infectious disease., Lancet, ISSN: 0140-6736

Journal article

Pothin E, Ferguson NM, Drakeley CJ, Ghani ACet al., 2016, Estimating malaria transmission intensity from Plasmodium falciparum serological data using antibody density models, Malaria Journal, Vol: 15, ISSN: 1475-2875

Background: Serological data are increasingly being used to monitor malaria transmission intensity and havebeen demonstrated to be particularly useful in areas of low transmission where traditional measures such as EIR andparasite prevalence are limited. The seroconversion rate (SCR) is usually estimated using catalytic models in whichthe measured antibody levels are used to categorize individuals as seropositive or seronegative. One limitationof this approach is the requirement to impose a fixed cut-off to distinguish seropositive and negative individuals.Furthermore, the continuous variation in antibody levels is ignored thereby potentially reducing the precision of theestimate.Methods: An age-specific density model which mimics antibody acquisition and loss was developed to make fulluse of the information provided by serological measures of antibody levels. This was fitted to blood-stage antibodydensity data from 12 villages at varying transmission intensity in Northern Tanzania to estimate the exposure rate asan alternative measure of transmission intensity.Results: The results show a high correlation between the exposure rate estimates obtained and the estimated SCRobtained from a catalytic model (r = 0.95) and with two derived measures of EIR (r = 0.74 and r = 0.81). Estimates ofexposure rate obtained with the density model were also more precise than those derived from catalytic models.Conclusion: This approach, if validated across different epidemiological settings, could be a useful alternative frameworkfor quantifying transmission intensity, which makes more complete use of serological data.

Journal article

Lessler J, Salje H, van Kerkhove M, Collins Cet al., 2016, Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia, American Journal of Epidemiology, Vol: 183, Pages: 657-663, ISSN: 1476-6256

Not all persons infected with Middle East respiratory syndrome coronavirus (MERS-CoV) develop severe symptoms, which likely leads to an underestimation of the number of people infected and an overestimation of the severity. To estimate the number of MERS-CoV infections that have occurred in the Kingdom of Saudi Arabia, we applied a statistical model to a line list describing 721 MERS-CoV infections detected between June 7, 2012, and July 25, 2014. We estimated that 1,528 (95% confidence interval (CI): 1,327, 1,883) MERS-CoV infections occurred in this interval, which is 2.1 (95% CI: 1.8, 2.6) times the number reported. The probability of developing symptoms ranged from 11% (95% CI: 4, 25) in persons under 10 years of age to 88% (95% CI: 72, 97) in those 70 years of age or older. An estimated 22% (95% CI: 18, 25) of those infected with MERS-CoV died. MERS-CoV is deadly, but this work shows that its clinical severity differs markedly between groups and that many cases likely go undiagnosed.

Journal article

Fumanellil L, Ajelli M, Merler S, Ferguson NM, Cauchemez Set al., 2016, Model-based comprehensive analysis of school closure policies for mitigating influenza epidemics and pandemics, Plos Computational Biology, Vol: 12, ISSN: 1553-7358

School closure policies are among the non-pharmaceutical measures taken into consideration to mitigate influenza epidemics and pandemics spread. However, a systematic review of the effectiveness of alternative closure policies has yet to emerge. Here we perform a model-based analysis of four types of school closure, ranging from the nationwide closure of all schools at the same time to reactive gradual closure, starting from class-by-class, then grades and finally the whole school. We consider policies based on triggers that are feasible to monitor, such as school absenteeism and national ILI surveillance system. We found that, under specific constraints on the average number of weeks lost per student, reactive school-by-school, gradual, and county-wide closure give comparable outcomes in terms of optimal infection attack rate reduction, peak incidence reduction or peak delay. Optimal implementations generally require short closures of one week each; this duration is long enough to break the transmission chain without leading to unnecessarily long periods of class interruption. Moreover, we found that gradual and county closures may be slightly more easily applicable in practice as they are less sensitive to the value of the excess absenteeism threshold triggering the start of the intervention. These findings suggest that policy makers could consider school closure policies more diffusely as response strategy to influenza epidemics and pandemics, and the fact that some countries already have some experience of gradual or regional closures for seasonal influenza outbreaks demonstrates that logistic and feasibility challenges of school closure strategies can be to some extent overcome.

Journal article

Agua-Agum J, Ariyarajah A, Blake IM, Cori A, Donnelly CA, Dorigatti I, Dye C, Eck-Manns T, Ferguson NM, Fraser C, Garske T, Hinsley W, Jombart T, Mills HL, Nedjati-Gilani G, Newton E, Nouvellet P, Perkins D, Riley S, Schumacher D, Shah A, Thomas LJ, Van Kerkhove MDet al., 2016, Ebola virus disease among male and female persons in West Africa, New England Journal of Medicine, Vol: 374, Pages: 96-98, ISSN: 1533-4406

Journal article

Karkey A, Jombart T, Walker AW, Thompson CN, Torres A, Dongol S, Tran Vu Thieu N, Pham Thanh D, Tran Thi Ngoc D, Voong Vinh P, Singer AC, Parkhill J, Thwaites G, Basnyat B, Ferguson N, Baker Set al., 2016, The Ecological Dynamics of Fecal Contamination and Salmonella Typhi and Salmonella Paratyphi A in Municipal Kathmandu Drinking Water., PLOS Neglected Tropical Diseases, Vol: 10, ISSN: 1935-2735

One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.

Journal article

Pinsent A, Fraser C, Ferguson NM, Riley Set al., 2016, A systematic review of reported reassortantviral lineages of influenza A, BMC Infectious Diseases, ISSN: 1471-2334

Journal article

Nouvellet P, Garske T, Mills HL, Nedjati-Gilani G, Hinsley W, Blake IM, Van Kerkhove MD, Cori A, Dorigatti I, Jombart T, Riley S, Fraser C, Donnelly CA, Ferguson NMet al., 2015, The role of rapid diagnostics in managing Ebola epidemics, Nature, Vol: 528, Pages: S109-S116, ISSN: 0028-0836

Ebola emerged in West Africa around December 2013 and swept through Guinea, Sierra Leone and Liberia, giving rise to 27,748 confirmed, probable and suspected cases reported by 29 July 2015. Case diagnoses during the epidemic have relied on polymerase chain reaction-based tests. Owing to limited laboratory capacity and local transport infrastructure, the delays from sample collection to test results being available have often been 2 days or more. Point-of-care rapid diagnostic tests offer the potential to substantially reduce these delays. We review Ebola rapid diagnostic tests approved by the World Health Organization and those currently in development. Such rapid diagnostic tests could allow early triaging of patients, thereby reducing the potential for nosocomial transmission. In addition, despite the lower test accuracy, rapid diagnostic test-based diagnosis may be beneficial in some contexts because of the reduced time spent by uninfected individuals in health-care settings where they may be at increased risk of infection; this also frees up hospital beds. We use mathematical modelling to explore the potential benefits of diagnostic testing strategies involving rapid diagnostic tests alone and in combination with polymerase chain reaction testing. Our analysis indicates that the use of rapid diagnostic tests with sensitivity and specificity comparable with those currently under development always enhances control, whether evaluated at a health-care-unit or population level. If such tests had been available throughout the recent epidemic, we estimate, for Sierra Leone, that their use in combination with confirmatory polymerase chain-reaction testing might have reduced the scale of the epidemic by over a third.

Journal article

Walker P, White M, Griffin JT, Reynolds AM, Ferguson NM, Ghani ACet al., 2015, ESTIMATED INCREASE IN MALARIA MORBIDITY AND MORTALITY IN EBOLA-AFFECTED COUNTRIES DUE TO DECREASED HEALTHCARE CAPACITY AND THE POTENTIAL IMPACT OF MITIGATION STRATEGIES, Publisher: AMER SOC TROP MED & HYGIENE, Pages: 292-292, ISSN: 0002-9637

Conference paper

Walker PG, Griffin JT, Ferguson NM, Ghani ACet al., 2015, ESTIMATING THE MOST RESOURCE-EFFICIENT MALARIA INTERVENTION PACKAGES AND SPATIAL SCALES TO ACHIEVE ELIMINATION ACROSS AFRICA, Publisher: AMER SOC TROP MED & HYGIENE, Pages: 476-477, ISSN: 0002-9637

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00308881&limit=30&person=true&page=7&respub-action=search.html