Imperial College London

Nick S Jones

Faculty of Natural SciencesDepartment of Mathematics

Professor of Mathematical Sciences
 
 
 
//

Contact

 

+44 (0)20 7594 1146nick.jones

 
 
//

Location

 

301aSir Ernst Chain BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Latorre-Pellicer:2019:10.1016/j.cmet.2019.09.007,
author = {Latorre-Pellicer, A and Lechuga-Vieco, AV and Johnston, IG and Hämäläinen, RH and Pellico, J and Justo-Méndez, R and Fernández-Toro, JM and Clavería, C and Guaras, A and Sierra, R and Llop, J and Torres, M and Criado, LM and Suomalainen, A and Jones, NS and Ruíz-Cabello, J and Enríquez, JA},
doi = {10.1016/j.cmet.2019.09.007},
journal = {Cell Metabolism},
pages = {1120--1130.e5},
title = {Regulation of mother-to-offspring transmission of mtDNA heteroplasmy},
url = {http://dx.doi.org/10.1016/j.cmet.2019.09.007},
volume = {30},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - mtDNA is present in multiple copies in each cell derived from the expansions of those in the oocyte. Heteroplasmy, more than one mtDNA variant, may be generated by mutagenesis, paternal mtDNA leakage, and novel medical technologies aiming to prevent inheritance of mtDNA-linked diseases. Heteroplasmy phenotypic impact remains poorly understood. Mouse studies led to contradictory models of random drift or haplotype selection for mother-to-offspring transmission of mtDNA heteroplasmy. Here, we show that mtDNA heteroplasmy affects embryo metabolism, cell fitness, and induced pluripotent stem cell (iPSC) generation. Thus, genetic and pharmacological interventions affecting oxidative phosphorylation (OXPHOS) modify competition among mtDNA haplotypes during oocyte development and/or at early embryonic stages. We show that heteroplasmy behavior can fall on a spectrum from random drift to strong selection, depending on mito-nuclear interactions and metabolic factors. Understanding heteroplasmy dynamics and its mechanisms provide novel knowledge of a fundamental biological process and enhance our ability to mitigate risks in clinical applications affecting mtDNA transmission.
AU - Latorre-Pellicer,A
AU - Lechuga-Vieco,AV
AU - Johnston,IG
AU - Hämäläinen,RH
AU - Pellico,J
AU - Justo-Méndez,R
AU - Fernández-Toro,JM
AU - Clavería,C
AU - Guaras,A
AU - Sierra,R
AU - Llop,J
AU - Torres,M
AU - Criado,LM
AU - Suomalainen,A
AU - Jones,NS
AU - Ruíz-Cabello,J
AU - Enríquez,JA
DO - 10.1016/j.cmet.2019.09.007
EP - 1130
PY - 2019///
SN - 1550-4131
SP - 1120
TI - Regulation of mother-to-offspring transmission of mtDNA heteroplasmy
T2 - Cell Metabolism
UR - http://dx.doi.org/10.1016/j.cmet.2019.09.007
UR - http://hdl.handle.net/10044/1/74117
VL - 30
ER -