Imperial College London

Dr. Oliver Buxton

Faculty of EngineeringDepartment of Aeronautics

Reader in Experimental Fluid Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 5118o.buxton Website CV

 
 
//

Location

 

213City and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@inproceedings{Kankanwadi:2019,
author = {Kankanwadi, KS and Buxton, ORH},
title = {Turbulent entrainment from a turbulent background},
year = {2019}
}

RIS format (EndNote, RefMan)

TY  - CPAPER
AB - Simultaneous particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements were conducted in order to investigate the effects of background turbulence on the entrainment process as well as on the behaviour of the wake interface. Previous studies have highlighted the importance of length scale as well as turbulence intensity in the background flow. This paper reports on a parametric study examining entrainment into the wake of a circular cylinder by independently varying background turbulence parameters through the use of turbulence generating grids. Despite the availability of turbulent rotational fluid on both sides of the interface, the classical turbulent/non-turbulent interface result of an enstrophy jump is reproduced, even in the harshest incoming free-stream turbulence conditions. Examining the tortuosity, reveals that both length scale and turbulence intensity in the background turbulence act to increase the interface surface area. Furthermore, the entrainment process is found to be greatly sensitive to the turbulence intensity of the subjected free-stream turbulence. However, despite an increase in surface area, a net reduction in mean entrainment mass flux is observed with increased intensity in the background turbulence. Examining the mass flux PDFs, reveals that this behaviour is a result of substantial, yet infrequent detrainment events.
AU - Kankanwadi,KS
AU - Buxton,ORH
PY - 2019///
TI - Turbulent entrainment from a turbulent background
ER -